|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM301762341 |
003 |
DE-627 |
005 |
20231225105311.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.9b02549
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1005.xml
|
035 |
|
|
|a (DE-627)NLM301762341
|
035 |
|
|
|a (NLM)31568724
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Dong, Jia Jia
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Contact Killing of Gram-Positive and Gram-Negative Bacteria on PDMS Provided with Immobilized Hyperbranched Antibacterial Coatings
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 03.09.2020
|
500 |
|
|
|a Date Revised 03.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Here we describe in detail the preparation and application of antibacterial coatings on PDMS (poly(dimethylsiloxane)) and the contact-killing properties with 10 bacterial strains. Our aim was to develop a generally applicable coating to prevent biomaterial acquired infections, which is the major mode of failure of biomedical implants. In the first step, the surface was provided with a hydrophobic hyperbranched coating resin that was covalently attached to PDMS, mediated by an appropriate coupling agent. The coupling agent contained a siloxane group that reacts covalently with the silanol groups of air-plasma-treated PDMS and a blocked isocyanate enabling covalent coupling with the amino groups of the hyperbranched coating resins. The coating resins were functionalized with a polyethylenimine and subsequently quaternized with bromohexane and iodomethane. The coatings were highly effective against Gram-positive bacteria (five strains) and sufficiently active against Gram-negative bacteria (five stains). The killing effect on the latter group was strongly enhanced by adding a permeabilizer (EDTA). The biocidal efficacy was not influenced by the presence of (saliva) proteins
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Anti-Bacterial Agents
|2 NLM
|
650 |
|
7 |
|a Coated Materials, Biocompatible
|2 NLM
|
650 |
|
7 |
|a Dimethylpolysiloxanes
|2 NLM
|
650 |
|
7 |
|a baysilon
|2 NLM
|
650 |
|
7 |
|a 63148-62-9
|2 NLM
|
700 |
1 |
|
|a Muszanska, Agnieszka
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiang, Fei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Falkenberg, Richard
|e verfasserin
|4 aut
|
700 |
1 |
|
|a van de Belt-Gritter, Betsy
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Loontjens, Ton
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 35(2019), 43 vom: 29. Okt., Seite 14108-14116
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2019
|g number:43
|g day:29
|g month:10
|g pages:14108-14116
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.9b02549
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2019
|e 43
|b 29
|c 10
|h 14108-14116
|