Toward a Quantitative Survey of Dimension Reduction Techniques

Dimensionality reduction methods, also known as projections, are frequently used in multidimensional data exploration in machine learning, data science, and information visualization. Tens of such techniques have been proposed, aiming to address a wide set of requirements, such as ability to show th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 27(2021), 3 vom: 30. März, Seite 2153-2173
1. Verfasser: Espadoto, Mateus (VerfasserIn)
Weitere Verfasser: Martins, Rafael M, Kerren, Andreas, Hirata, Nina S T, Telea, Alexandru C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM301747067
003 DE-627
005 20231225105252.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2019.2944182  |2 doi 
028 5 2 |a pubmed24n1005.xml 
035 |a (DE-627)NLM301747067 
035 |a (NLM)31567092 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Espadoto, Mateus  |e verfasserin  |4 aut 
245 1 0 |a Toward a Quantitative Survey of Dimension Reduction Techniques 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 29.01.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Dimensionality reduction methods, also known as projections, are frequently used in multidimensional data exploration in machine learning, data science, and information visualization. Tens of such techniques have been proposed, aiming to address a wide set of requirements, such as ability to show the high-dimensional data structure, distance or neighborhood preservation, computational scalability, stability to data noise and/or outliers, and practical ease of use. However, it is far from clear for practitioners how to choose the best technique for a given use context. We present a survey of a wide body of projection techniques that helps answering this question. For this, we characterize the input data space, projection techniques, and the quality of projections, by several quantitative metrics. We sample these three spaces according to these metrics, aiming at good coverage with bounded effort. We describe our measurements and outline observed dependencies of the measured variables. Based on these results, we draw several conclusions that help comparing projection techniques, explain their results for different types of data, and ultimately help practitioners when choosing a projection for a given context. Our methodology, datasets, projection implementations, metrics, visualizations, and results are publicly open, so interested stakeholders can examine and/or extend this benchmark 
650 4 |a Journal Article 
700 1 |a Martins, Rafael M  |e verfasserin  |4 aut 
700 1 |a Kerren, Andreas  |e verfasserin  |4 aut 
700 1 |a Hirata, Nina S T  |e verfasserin  |4 aut 
700 1 |a Telea, Alexandru C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 27(2021), 3 vom: 30. März, Seite 2153-2173  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:3  |g day:30  |g month:03  |g pages:2153-2173 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2019.2944182  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 3  |b 30  |c 03  |h 2153-2173