Accurate Pedestrian Detection by Human Pose Regression

Pedestrian detection with high detection and localization accuracy is increasingly important for many practical applications. Due to the flexible structure of the human body, it is hard to train a template-based pedestrian detector that achieves a high detection rate and a good localization accuracy...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 26. Sept.
1. Verfasser: Zhao, Yun (VerfasserIn)
Weitere Verfasser: Yuan, Zejian, Chen, Badong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM301746990
003 DE-627
005 20250226015609.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2942686  |2 doi 
028 5 2 |a pubmed25n1005.xml 
035 |a (DE-627)NLM301746990 
035 |a (NLM)31567086 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhao, Yun  |e verfasserin  |4 aut 
245 1 0 |a Accurate Pedestrian Detection by Human Pose Regression 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Pedestrian detection with high detection and localization accuracy is increasingly important for many practical applications. Due to the flexible structure of the human body, it is hard to train a template-based pedestrian detector that achieves a high detection rate and a good localization accuracy simultaneously. In this paper, we utilize human pose estimation to improve the detection and localization accuracy of pedestrian detection. We design two kinds of pose-indexed features that can considerably improve the discriminability of the detector. In addition to employing a two-stage pipeline to carry out these two tasks, we unify pose estimation and pedestrian detection into a cascaded decision forest in which they can cooperate sufficiently. To prevent irregular positive examples, such as truncated ones, from distracting the pedestrian detection and the pose regression, we clean the positive training data by realigning the bounding boxes and rejecting the wrong positive samples. Experimental results on the Caltech test dataset demonstrate the effectiveness of our proposed method. Our detector achieves 11.1% MR-2, outperforming all existing detectors without using the convolutional neural network (CNN). Moreover, our method can be assembled with other detectors based on CNNs to improve detection and localization performance. By collaborating with the recent CNN-based method, our detector achieves 5.5% MR-2 on the Caltech test dataset, outperforming the state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Yuan, Zejian  |e verfasserin  |4 aut 
700 1 |a Chen, Badong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 26. Sept.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g year:2019  |g day:26  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2942686  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 26  |c 09