Mumford-Shah Loss Functional for Image Segmentation with Deep Learning

Recent state-of-the-art image segmentation algorithms are mostly based on deep neural networks, thanks to their high performance and fast computation time. However, these methods are usually trained in a supervised manner, which requires large number of high quality ground-truth segmentation masks....

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 27. Sept.
Auteur principal: Kim, Boah (Auteur)
Autres auteurs: Ye, Jong Chul
Format: Article en ligne
Langue:English
Publié: 2019
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM301746966
003 DE-627
005 20250226015609.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2941265  |2 doi 
028 5 2 |a pubmed25n1005.xml 
035 |a (DE-627)NLM301746966 
035 |a (NLM)31567084 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, Boah  |e verfasserin  |4 aut 
245 1 0 |a Mumford-Shah Loss Functional for Image Segmentation with Deep Learning 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Recent state-of-the-art image segmentation algorithms are mostly based on deep neural networks, thanks to their high performance and fast computation time. However, these methods are usually trained in a supervised manner, which requires large number of high quality ground-truth segmentation masks. On the other hand, classical image segmentation approaches such as level-set methods are formulated in a self-supervised manner by minimizing energy functions such as Mumford-Shah functional, so they are still useful to help generation of segmentation masks without labels. Unfortunately, these algorithms are usually computationally expensive and often have limitation in semantic segmentation. In this paper, we propose a novel loss function based on Mumford-Shah functional that can be used in deep-learning based image segmentation without or with small labeled data. This loss function is based on the observation that the softmax layer of deep neural networks has striking similarity to the characteristic function in the Mumford-Shah functional. We show that the new loss function enables semi-supervised and unsupervised segmentation. In addition, our loss function can be also used as a regularized function to enhance supervised semantic segmentation algorithms. Experimental results on multiple datasets demonstrate the effectiveness of the proposed method 
650 4 |a Journal Article 
700 1 |a Ye, Jong Chul  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 27. Sept.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g year:2019  |g day:27  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2941265  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 27  |c 09