Prolonged oxygen depletion in microwounded cells of Chara corallina detected with novel oxygen nanosensors
© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Veröffentlicht in: | Journal of experimental botany. - 1985. - 71(2020), 1 vom: 01. Jan., Seite 386-398 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | Journal of experimental botany |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Chara corallina NADPH oxidase cytoskeleton mechanical stress oxygen platinum nanoelectrodes Oxygen S88TT14065 |
Zusammenfassung: | © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com. Primary physicochemical steps in microwounding of plants were investigated using electrochemical nano- and microprobes, with a focus on the role of oxygen in the wounding responses of individual plant cells. Electrochemical measurements of cell oxygen content were made with carbon-filled quartz micropipettes with platinum-coated tips (oxygen nanosensors). These novel platinum nanoelectrodes are useful for understanding cell oxygen metabolism and can be employed to study the redox biochemistry and biology of cells, tissues and organisms. We show here that microinjury of Chara corallina internodal cells with the tip of a glass micropipette is associated with a drastic decrease in oxygen concentration at the vicinity of the stimulation site. This decrease is reversible and lasts for up to 40 minutes. Membrane stretching, calcium influx, and cytoskeleton rearrangements were found to be essential for the localized oxygen depletion induced by cell wall microwounding. Inhibition of electron transport in chloroplasts or mitochondria did not affect the magnitude or timing of the observed response. In contrast, the inhibition of NADPH oxidase activity caused a significant reduction in the amplitude of the decrease in oxygen concentration. We suggest that the observed creation of localized anoxic conditions in response to cell wall puncture might be mediated by NADPH oxidase |
---|---|
Beschreibung: | Date Completed 05.03.2021 Date Revised 22.02.2023 published: Print Citation Status MEDLINE |
ISSN: | 1460-2431 |
DOI: | 10.1093/jxb/erz433 |