Doppler Ultrasound Technology for Fetal Heart Rate Monitoring : A Review

Fetal well-being is commonly assessed by monitoring the fetal heart rate (fHR). In clinical practice, the de facto standard technology for fHR monitoring is based on the Doppler ultrasound (US). Continuous monitoring of the fHR before and during labor is performed using a US transducer fixed on the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 67(2020), 2 vom: 31. Feb., Seite 226-238
1. Verfasser: Hamelmann, Paul (VerfasserIn)
Weitere Verfasser: Vullings, Rik, Kolen, Alexander F, Bergmans, Jan W M, van Laar, Judith O E H, Tortoli, Piero, Mischi, Massimo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Review
Beschreibung
Zusammenfassung:Fetal well-being is commonly assessed by monitoring the fetal heart rate (fHR). In clinical practice, the de facto standard technology for fHR monitoring is based on the Doppler ultrasound (US). Continuous monitoring of the fHR before and during labor is performed using a US transducer fixed on the maternal abdomen. The continuous fHR monitoring, together with simultaneous monitoring of the uterine activity, is referred to as cardiotocography (CTG). In contrast, for intermittent measurements of the fHR, a handheld Doppler US transducer is typically used. In this article, the technology of Doppler US for continuous fHR monitoring and intermittent fHR measurements is described, with emphasis on fHR monitoring for CTG. Special attention is dedicated to the measurement environment, which includes the clinical setting in which fHR monitoring is commonly performed. In addition, to understand the signal content of acquired Doppler US signals, the anatomy and physiology of the fetal heart and the surrounding maternal abdomen are described. The challenges encountered in these measurements have led to different technological strategies, which are presented and critically discussed, with a focus on the US transducer geometry, Doppler signal processing, and fHR extraction methods
Beschreibung:Date Completed 31.12.2020
Date Revised 31.12.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1525-8955
DOI:10.1109/TUFFC.2019.2943626