Morphological, anatomical and DNA methylation changes of tree peony buds during chilling induced dormancy release

Copyright © 2019 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 144(2019) vom: 15. Nov., Seite 64-72
1. Verfasser: Xin, Hua (VerfasserIn)
Weitere Verfasser: Zhang, Yuxi, Wang, Xueting, Liu, Chunying, Feng, Weirong, Gai, Shupeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Anatomy Chilling Compound bud DNA methylation Dormancy Methylation treatments (5azaC SAM) Tree peony
Beschreibung
Zusammenfassung:Copyright © 2019 Elsevier Masson SAS. All rights reserved.
Bud endodormancy in tree peony is a growth cessation-like state, and sufficient chilling perception is necessary to break it. In this study, 120 plants were subjected to 0-4 °C climate chamber for 0-28 d with a weekly interval, morphology and structure changes of buds were studied with a scanning electron microscope (SEM) and paraffin sections during the dormancy process. Dormancy status was evaluated after being transferred to greenhouse for 30 d. Results showed that the diameter of the buds gradually expanded, along with continuous elongation of sepals, petals, stamens and carpels in the chilling accumulation process. Notably, dormancy release was marked with the establishment of xylem vessels in lateral vein of the petal. Meanwhile, DNA methylation was detected by HPLC and immunochemical technology, aimed to illuminate the role of DNA methylation in the dormancy release, we found that 5 mC level fell from 39.4% to 24.2% after exposed to 28 d chilling. These results were consistent with the immunochemical analysis, and inversely related to the sprouting rate after being moved to greenhouse for 30 d. Exogenous application of 5azaC (5-azacytidine) decreased DNA methylation level, accompanied by an improved bud sprouting capacity, while the effect of SAM (S-adenosylmethionine) was the opposite. In summary, prolonged chilling was accompanied by further differentiation and development of the compound bud, which resulted in DNA hypomethylation and promoted dormancy release in tree peony
Beschreibung:Date Completed 20.02.2020
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2019.09.017