Unravelling triterpene biosynthesis through functional characterization of an oxidosqualene cyclase (OSC) from Cleome arabica L
Copyright © 2019 Elsevier Masson SAS. All rights reserved.
Veröffentlicht in: | Plant physiology and biochemistry : PPB. - 1991. - 144(2019) vom: 15. Nov., Seite 73-84 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Plant physiology and biochemistry : PPB |
Schlagworte: | Journal Article Cleome arabica Heterologous expression Lupeol Oxidosqualene cyclase Pentacyclic triterpene Pentacyclic Triterpenes Triterpenes Intramolecular Transferases EC 5.4.- mehr... |
Zusammenfassung: | Copyright © 2019 Elsevier Masson SAS. All rights reserved. Cleome arabica is a medicinal plant contains diverse bioactive compounds and terpenoids are the major components. However, the isolation and purification of the active triterpenes from this plant involve long and complicated procedures. The present work investigates the triterpenes profiles of different tissues, besides that, describes the isolation, heterologous expression and functional characterization of C. arabica gene coding for triterpenes synthases. The phytochemical investigation through GC-MS revealed significant accumulation of pentacyclic triterpenes in leaves and siliques at mature stage compared to the stems and roots of C. arabica. Among the pentacyclic triterpenes, the lupeol reached the highest level of 320 μg/g DW in leaves at maturity stage compared to the other tissues. The biosynthesis of a pentacyclic triterpene was investigated through isolation and cloning of a full-length oxidosqualene cyclase cDNA (CaOSC) from mature leaves of C. arabica. The bioinformatic analyses revealed that CaOSC was highly homologous with the characterized lupeol synthases and shared 79.3% identity to camelliol C synthase from A. thaliana. Heterologous expression of CaOSC gene in Saccharomyces cerevisiae synthesized lupeol as a single product. The lupeol biosynthesis was exponentially increased after induction through the fermentation process reaching the maximum of 2.33 μg/ml for 240 h. Furthermore, organ-specific expression of lupeol gene was exactly matched the accumulation pattern in different tissues of C. arabica during phenological cycle. Thus, the identified CaOSC will be useful in enhancing triterpene yield for industrial purposes |
---|---|
Beschreibung: | Date Completed 20.02.2020 Date Revised 30.09.2020 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1873-2690 |
DOI: | 10.1016/j.plaphy.2019.09.035 |