Gap-filling approaches for eddy covariance methane fluxes : A comparison of three machine learning algorithms and a traditional method with principal component analysis

© 2019 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 26(2020), 3 vom: 04. März, Seite 1499-1518
1. Verfasser: Kim, Yeonuk (VerfasserIn)
Weitere Verfasser: Johnson, Mark S, Knox, Sara H, Black, T Andrew, Dalmagro, Higo J, Kang, Minseok, Kim, Joon, Baldocchi, Dennis
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't artificial neural network comparison of gap-filling techniques eddy covariance machine learning marginal distribution sampling methane flux random forest support vector machine mehr... Carbon Dioxide 142M471B3J Methane OP0UW79H66
LEADER 01000naa a22002652 4500
001 NLM301615934
003 DE-627
005 20231225105012.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.14845  |2 doi 
028 5 2 |a pubmed24n1005.xml 
035 |a (DE-627)NLM301615934 
035 |a (NLM)31553826 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, Yeonuk  |e verfasserin  |4 aut 
245 1 0 |a Gap-filling approaches for eddy covariance methane fluxes  |b A comparison of three machine learning algorithms and a traditional method with principal component analysis 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.03.2020 
500 |a Date Revised 19.03.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2019 John Wiley & Sons Ltd. 
520 |a Methane flux (FCH4 ) measurements using the eddy covariance technique have increased over the past decade. FCH4 measurements commonly include data gaps, as is the case with CO2 and energy fluxes. However, gap-filling FCH4 data are more challenging than other fluxes due to its unique characteristics including multidriver dependency, variabilities across multiple timescales, nonstationarity, spatial heterogeneity of flux footprints, and lagged influence of biophysical drivers. Some researchers have applied a marginal distribution sampling (MDS) algorithm, a standard gap-filling method for other fluxes, to FCH4 datasets, and others have applied artificial neural networks (ANN) to resolve the challenging characteristics of FCH4 . However, there is still no consensus regarding FCH4 gap-filling methods due to limited comparative research. We are not aware of the applications of machine learning (ML) algorithms beyond ANN to FCH4 datasets. Here, we compare the performance of MDS and three ML algorithms (ANN, random forest [RF], and support vector machine [SVM]) using multiple combinations of ancillary variables. In addition, we applied principal component analysis (PCA) as an input to the algorithms to address multidriver dependency of FCH4 and reduce the internal complexity of the algorithmic structures. We applied this approach to five benchmark FCH4 datasets from both natural and managed systems located in temperate and tropical wetlands and rice paddies. Results indicate that PCA improved the performance of MDS compared to traditional inputs. ML algorithms performed better when using all available biophysical variables compared to using PCA-derived inputs. Overall, RF was found to outperform other techniques for all sites. We found gap-filling uncertainty is much larger than measurement uncertainty in accumulated CH4 budget. Therefore, the approach used for FCH4 gap filling can have important implications for characterizing annual ecosystem-scale methane budgets, the accuracy of which is important for evaluating natural and managed systems and their interactions with global change processes 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a artificial neural network 
650 4 |a comparison of gap-filling techniques 
650 4 |a eddy covariance 
650 4 |a machine learning 
650 4 |a marginal distribution sampling 
650 4 |a methane flux 
650 4 |a random forest 
650 4 |a support vector machine 
650 7 |a Carbon Dioxide  |2 NLM 
650 7 |a 142M471B3J  |2 NLM 
650 7 |a Methane  |2 NLM 
650 7 |a OP0UW79H66  |2 NLM 
700 1 |a Johnson, Mark S  |e verfasserin  |4 aut 
700 1 |a Knox, Sara H  |e verfasserin  |4 aut 
700 1 |a Black, T Andrew  |e verfasserin  |4 aut 
700 1 |a Dalmagro, Higo J  |e verfasserin  |4 aut 
700 1 |a Kang, Minseok  |e verfasserin  |4 aut 
700 1 |a Kim, Joon  |e verfasserin  |4 aut 
700 1 |a Baldocchi, Dennis  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 26(2020), 3 vom: 04. März, Seite 1499-1518  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:26  |g year:2020  |g number:3  |g day:04  |g month:03  |g pages:1499-1518 
856 4 0 |u http://dx.doi.org/10.1111/gcb.14845  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2020  |e 3  |b 04  |c 03  |h 1499-1518