|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM301582327 |
003 |
DE-627 |
005 |
20231225104930.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201904032
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1005.xml
|
035 |
|
|
|a (DE-627)NLM301582327
|
035 |
|
|
|a (NLM)31550402
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Shimada, Naohiko
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Cationic Copolymer-Chaperoned 2D-3D Reversible Conversion of Lipid Membranes
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 24.01.2020
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Nanosheets have thicknesses on the order of nanometers and planar dimensions in the micrometer range. Nanomaterials that are capable of converting reversibly between 2D nanosheets and 3D structures in response to specific triggers can enable construction of nanodevices. Supra-molecular lipid nanosheets and their triggered conversions to 3D structures including vesicles and cups are reported. They are produced from lipid vesicles upon addition of amphiphilic peptides and cationic copolymers that act as peptide chaperones. By regulation of the chaperoning activity of the copolymer, 2D to 3D conversions are reversibly triggered, allowing tuning of lipid bilayer structures and functionalities
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 2D-3D conversion
|
650 |
|
4 |
|a amphiphilic peptides
|
650 |
|
4 |
|a graft copolymers
|
650 |
|
4 |
|a lipid nanosheets
|
650 |
|
7 |
|a Dextrans
|2 NLM
|
650 |
|
7 |
|a Lipid Bilayers
|2 NLM
|
650 |
|
7 |
|a Peptides
|2 NLM
|
700 |
1 |
|
|a Kinoshita, Hirotaka
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Umegae, Takuma
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Azumai, Satomi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kume, Nozomi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ochiai, Takuro
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Takenaka, Tomoka
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sakamoto, Wakako
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yamada, Takayoshi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Furuta, Tadaomi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Masuda, Tsukuru
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sakurai, Minoru
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Higuchi, Hideo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Maruyama, Atsushi
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 31(2019), 44 vom: 05. Nov., Seite e1904032
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:31
|g year:2019
|g number:44
|g day:05
|g month:11
|g pages:e1904032
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201904032
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 31
|j 2019
|e 44
|b 05
|c 11
|h e1904032
|