Functional evolution of nodulin 26-like intrinsic proteins : from bacterial arsenic detoxification to plant nutrient transport

© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 225(2020), 3 vom: 05. Feb., Seite 1383-1396
1. Verfasser: Pommerrenig, Benjamin (VerfasserIn)
Weitere Verfasser: Diehn, Till A, Bernhardt, Nadine, Bienert, Manuela D, Mitani-Ueno, Namiki, Fuge, Jacqueline, Bieber, Annett, Spitzer, Christoph, Bräutigam, Andrea, Ma, Jian Feng, Chaumont, François, Bienert, Gerd P
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't aquaporin arsenic boron evolution metalloid nodulin 26-like intrinsic proteins nutrient transport Aquaporins mehr... Boric Acids Membrane Proteins Metalloids Plant Proteins Recombinant Fusion Proteins nodulin Water 059QF0KO0R Silicic Acid 1343-98-2 Phosphorus 27YLU75U4W Arsenic N712M78A8G Nitrogen N762921K75 Boron N9E3X5056Q boric acid R57ZHV85D4
LEADER 01000naa a22002652 4500
001 NLM301582173
003 DE-627
005 20231225104930.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1111/nph.16217  |2 doi 
028 5 2 |a pubmed24n1005.xml 
035 |a (DE-627)NLM301582173 
035 |a (NLM)31550387 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pommerrenig, Benjamin  |e verfasserin  |4 aut 
245 1 0 |a Functional evolution of nodulin 26-like intrinsic proteins  |b from bacterial arsenic detoxification to plant nutrient transport 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.12.2020 
500 |a Date Revised 18.01.2021 
500 |a published: Print-Electronic 
500 |a ErratumIn: New Phytol. 2020 Dec;228(5):1690. - PMID 33460125 
500 |a Citation Status MEDLINE 
520 |a © 2019 The Authors. New Phytologist © 2019 New Phytologist Trust. 
520 |a Nodulin 26-like intrinsic proteins (NIPs) play essential roles in transporting the nutrients silicon and boron in seed plants, but the evolutionary origin of this transport function and the co-permeability to toxic arsenic remains enigmatic. Horizontal gene transfer of a yet uncharacterised bacterial AqpN-aquaporin group was the starting-point for plant NIP evolution. We combined intense sequence, phylogenetic and genetic context analyses and a mutational approach with various transport assays in oocytes and plants to resolve the transorganismal and functional evolution of bacterial and algal and terrestrial plant NIPs and to reveal their molecular transport specificity features. We discovered that aqpN genes are prevalently located in arsenic resistance operons of various prokaryotic phyla. We provided genetic and functional evidence that these proteins contribute to the arsenic detoxification machinery. We identified NIPs with the ancestral bacterial AqpN selectivity filter composition in algae, liverworts, moss, hornworts and ferns and demonstrated that these archetype plant NIPs and their prokaryotic progenitors are almost impermeable to water and silicon but transport arsenic and boron. With a mutational approach, we demonstrated that during evolution, ancestral NIP selectivity shifted to allow subfunctionalisations. Together, our data provided evidence that evolution converted bacterial arsenic efflux channels into essential seed plant nutrient transporters 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a aquaporin 
650 4 |a arsenic 
650 4 |a boron 
650 4 |a evolution 
650 4 |a metalloid 
650 4 |a nodulin 26-like intrinsic proteins 
650 4 |a nutrient transport 
650 7 |a Aquaporins  |2 NLM 
650 7 |a Boric Acids  |2 NLM 
650 7 |a Membrane Proteins  |2 NLM 
650 7 |a Metalloids  |2 NLM 
650 7 |a Plant Proteins  |2 NLM 
650 7 |a Recombinant Fusion Proteins  |2 NLM 
650 7 |a nodulin  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
650 7 |a Silicic Acid  |2 NLM 
650 7 |a 1343-98-2  |2 NLM 
650 7 |a Phosphorus  |2 NLM 
650 7 |a 27YLU75U4W  |2 NLM 
650 7 |a Arsenic  |2 NLM 
650 7 |a N712M78A8G  |2 NLM 
650 7 |a Nitrogen  |2 NLM 
650 7 |a N762921K75  |2 NLM 
650 7 |a Boron  |2 NLM 
650 7 |a N9E3X5056Q  |2 NLM 
650 7 |a boric acid  |2 NLM 
650 7 |a R57ZHV85D4  |2 NLM 
700 1 |a Diehn, Till A  |e verfasserin  |4 aut 
700 1 |a Bernhardt, Nadine  |e verfasserin  |4 aut 
700 1 |a Bienert, Manuela D  |e verfasserin  |4 aut 
700 1 |a Mitani-Ueno, Namiki  |e verfasserin  |4 aut 
700 1 |a Fuge, Jacqueline  |e verfasserin  |4 aut 
700 1 |a Bieber, Annett  |e verfasserin  |4 aut 
700 1 |a Spitzer, Christoph  |e verfasserin  |4 aut 
700 1 |a Bräutigam, Andrea  |e verfasserin  |4 aut 
700 1 |a Ma, Jian Feng  |e verfasserin  |4 aut 
700 1 |a Chaumont, François  |e verfasserin  |4 aut 
700 1 |a Bienert, Gerd P  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The New phytologist  |d 1979  |g 225(2020), 3 vom: 05. Feb., Seite 1383-1396  |w (DE-627)NLM09818248X  |x 1469-8137  |7 nnns 
773 1 8 |g volume:225  |g year:2020  |g number:3  |g day:05  |g month:02  |g pages:1383-1396 
856 4 0 |u http://dx.doi.org/10.1111/nph.16217  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 225  |j 2020  |e 3  |b 05  |c 02  |h 1383-1396