|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM301555834 |
003 |
DE-627 |
005 |
20231225104858.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.9b02263
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1005.xml
|
035 |
|
|
|a (DE-627)NLM301555834
|
035 |
|
|
|a (NLM)31547644
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Liu, Sizhe
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Bioinspired Surface Functionalization of Titanium Alloy for Enhanced Lubrication and Bacterial Resistance
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 21.09.2020
|
500 |
|
|
|a Date Revised 04.12.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a In clinics it is extremely important for implanted devices to achieve the property of enhanced lubrication and bacterial resistance; however, such a strategy has rarely been reported in previous literature. In the present study, a surface functionalization method, motivated by articular cartilage-inspired superlubrication and mussel-inspired adhesion, was proposed to modify titanium alloy (Ti6Al4V) using the copolymer (DMA-MPC) synthesized via free radical copolymerization. The copolymer-coated Ti6Al4V (Ti6Al4VDMA-MPC) was evaluated by X-ray photoelectron spectroscopy, water contact angle, and Raman spectra to confirm that the DMA-MPC copolymer was successfully coated onto the Ti6Al4V substrate. In addition, the tribological test, with the polystyrene microsphere and Ti6Al4V or Ti6Al4V@DMA-MPC as the tribopair, indicated that the friction coefficient was greatly reduced for Ti6Al4V@DMA-MPC. Furthermore, the bacterial resistance test showed that bacterial attachment was significantly inhibited for Ti6Al4V@DMA-MPC for the three types of bacteria tested. The enhanced lubrication and bacterial resistance of Ti6Al4V@DMA-MPC was due to the tenacious hydration shell formed surrounding the zwitterionic charges in the phosphorylcholine group of the DMA-MPC copolymer. In summary, a bioinspired surface functionalization strategy is developed in this study, which can act as a universal and promising method to achieve enhanced lubrication and bacterial resistance for biomedical implants
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Alloys
|2 NLM
|
650 |
|
7 |
|a Anti-Bacterial Agents
|2 NLM
|
650 |
|
7 |
|a Coated Materials, Biocompatible
|2 NLM
|
650 |
|
7 |
|a Lubricants
|2 NLM
|
650 |
|
7 |
|a Methacrylates
|2 NLM
|
650 |
|
7 |
|a poly(2-(dimethylamino)ethyl methacrylate-b-2-methacryloyloxyethyl phosphorylcholine)
|2 NLM
|
650 |
|
7 |
|a Phosphorylcholine
|2 NLM
|
650 |
|
7 |
|a 107-73-3
|2 NLM
|
650 |
|
7 |
|a titanium alloy (TiAl6V4)
|2 NLM
|
650 |
|
7 |
|a 12743-70-3
|2 NLM
|
650 |
|
7 |
|a Titanium
|2 NLM
|
650 |
|
7 |
|a D1JT611TNE
|2 NLM
|
700 |
1 |
|
|a Zhang, Qian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Han, Ying
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Yulong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Yifei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Hongyu
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 35(2019), 40 vom: 08. Okt., Seite 13189-13195
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2019
|g number:40
|g day:08
|g month:10
|g pages:13189-13195
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.9b02263
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2019
|e 40
|b 08
|c 10
|h 13189-13195
|