Preparation and Comparative Stability of a Kaolinite-Tetrabutylphosphonium Bromide Intercalation Compound for Heat and Solvent Treatments

A kaolinite-tetrabutylphosphonium bromide (TBPBr) intercalation compound (Kaol-TBPBr) was prepared from kaolinite providing inorganic aluminosilicate layers and TBPBr as intercalated salts between the layers through the use of an intermediate, a kaolinite-dimethylsulfoxide (DMSO) intercalation compo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 35(2019), 42 vom: 22. Okt., Seite 13553-13561
1. Verfasser: Machida, Shingo (VerfasserIn)
Weitere Verfasser: Guégan, Régis, Sugahara, Yoshiyuki
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:A kaolinite-tetrabutylphosphonium bromide (TBPBr) intercalation compound (Kaol-TBPBr) was prepared from kaolinite providing inorganic aluminosilicate layers and TBPBr as intercalated salts between the layers through the use of an intermediate, a kaolinite-dimethylsulfoxide (DMSO) intercalation compound (Kaol-DMSO). The experimental data through complementary techniques, including X-ray diffraction, Fourier transform infrared spectroscopy, solid-state 13C and 29Si nuclear magnetic resonance (NMR) spectroscopy with cross polarization and magic angle spinning, inductively coupled plasma emission spectrometry, and ion chromatography, indicate complete removal of DMSO and intercalation of TBPBr with an increase in the basal spacing from 1.12 nm (Kaol-DMSO) to 1.53 nm (Kaol-TBPBr). In contrast to a similar intercalation compound, a kaolinite-tetrabutylammonium bromide (TBABr) intercalation compound (Kaol-TBABr) with a basal spacing of 1.51 nm, Kaol-TBPBr displayed interesting features such as enhanced thermal stabilities as well as bold resistance against several solvents. Kaol-TBPBr withstood thermal decomposition of the organic species over 100 °C much better than Kaol-TBABr. When Kaol-TBPBr and Kaol-TBABr were refluxed in methanol, ethanol, acetone, or toluene for 1 day, Kaol-TBPBr preserved the expanded kaolinite layers, while the Kaol-TBABr structure completely collapsed due to the release of TBABr. Thus, with these particular and unique features of Kaol-TBPBr, organophosphonium salts appear to be promising guest species for intercalation chemistry of kaolinite
Beschreibung:Date Revised 04.03.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.9b02375