Effect of Wetting and Dewetting Dynamics on Atomic Force Microscopy Measurements

Water bridge dynamics between an atomic force microscopy (AFM) tip and a flat substrate is studied by using a multibody dissipative particle dynamics (MDPD) model. First, the numerical model is validated by comparing the present results of droplet contact angles and liquid bridges with those reporte...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 41 vom: 15. Okt., Seite 13301-13310
1. Verfasser: Hemeda, A A (VerfasserIn)
Weitere Verfasser: Pal, S, Mishra, A, Torabi, M, Ahmadlouydarab, M, Li, Z, Palko, J, Ma, Y
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM301447527
003 DE-627
005 20231225104637.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.9b02575  |2 doi 
028 5 2 |a pubmed24n1004.xml 
035 |a (DE-627)NLM301447527 
035 |a (NLM)31536702 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hemeda, A A  |e verfasserin  |4 aut 
245 1 0 |a Effect of Wetting and Dewetting Dynamics on Atomic Force Microscopy Measurements 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.03.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Water bridge dynamics between an atomic force microscopy (AFM) tip and a flat substrate is studied by using a multibody dissipative particle dynamics (MDPD) model. First, the numerical model is validated by comparing the present results of droplet contact angles and liquid bridges with those reported in the literature. Then, the ability of MDPD to capture the meniscus shape and behavior for different operating conditions and geometric parameters is examined for both static and dynamic cases. Hence, several parametric studies and analyses of the AFM tip configuration and its operating conditions are reported. It is found that a critical capillary number of about 0.001 is calculated based on 5% change on the force measurements between the static and dynamic results. It is also demonstrated that the hysteresis behavior in the capillary force exerted on the AFM tip can be successfully predicted by using the MDPD model when the tip approaches or retracts from the substrate. Moreover, there is an excellent agreement in the results of breakup distance for different water bridge volumes between the predictions of the MDPD model and the theory. Also, the hysteresis of capillary force exerted on an AFM tip composed of multibody design is studied. The prediction on the transition of the capillary force vs distance between the AFM tip and the substrate is in good agreement with the experimental results. Therefore, we demonstrate a validated MDPD model which can successfully capture liquid bridge dynamics. This model can be used as a powerful design tool for meniscus manipulation technology, such as dip-pen nanolithography, as well as for studying dynamic, e.g., tapping mode AFM tip, interactions with a liquid bridge 
650 4 |a Journal Article 
700 1 |a Pal, S  |e verfasserin  |4 aut 
700 1 |a Mishra, A  |e verfasserin  |4 aut 
700 1 |a Torabi, M  |e verfasserin  |4 aut 
700 1 |a Ahmadlouydarab, M  |e verfasserin  |4 aut 
700 1 |a Li, Z  |e verfasserin  |4 aut 
700 1 |a Palko, J  |e verfasserin  |4 aut 
700 1 |a Ma, Y  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 35(2019), 41 vom: 15. Okt., Seite 13301-13310  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:35  |g year:2019  |g number:41  |g day:15  |g month:10  |g pages:13301-13310 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.9b02575  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 35  |j 2019  |e 41  |b 15  |c 10  |h 13301-13310