Deep Heterogeneous Hashing for Face Video Retrieval

Retrieving videos of a particular person with face image as query via hashing technique has many important applications. While face images are typically represented as vectors in Euclidean space, characterizing face videos with some robust set modeling techniques (e.g. covariance matrices as exploit...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 16. Sept.
1. Verfasser: Qiao, Shishi (VerfasserIn)
Weitere Verfasser: Wang, Ruiping, Shan, Shiguang, Chen, Xilin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM301442037
003 DE-627
005 20240229162331.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2940683  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM301442037 
035 |a (NLM)31535997 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qiao, Shishi  |e verfasserin  |4 aut 
245 1 0 |a Deep Heterogeneous Hashing for Face Video Retrieval 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Retrieving videos of a particular person with face image as query via hashing technique has many important applications. While face images are typically represented as vectors in Euclidean space, characterizing face videos with some robust set modeling techniques (e.g. covariance matrices as exploited in this study, which reside on Riemannian manifold), has recently shown appealing advantages. This hence results in a thorny heterogeneous spaces matching problem. Moreover, hashing with handcrafted features as done in many existing works is clearly inadequate to achieve desirable performance for this task. To address such problems, we present an end-toend Deep Heterogeneous Hashing (DHH) method that integrates three stages including image feature learning, video modeling, and heterogeneous hashing in a single framework, to learn unified binary codes for both face images and videos. To tackle the key challenge of hashing on manifold, a well-studied Riemannian kernel mapping is employed to project data (i.e. covariance matrices) into Euclidean space and thus enables to embed the two heterogeneous representations into a common Hamming space, where both intra-space discriminability and inter-space compatibility are considered. To perform network optimization, the gradient of the kernel mapping is innovatively derived via structured matrix backpropagation in a theoretically principled way. Experiments on three challenging datasets show that our method achieves quite competitive performance compared with existing hashing methods 
650 4 |a Journal Article 
700 1 |a Wang, Ruiping  |e verfasserin  |4 aut 
700 1 |a Shan, Shiguang  |e verfasserin  |4 aut 
700 1 |a Chen, Xilin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 16. Sept.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2019  |g day:16  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2940683  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 16  |c 09