Noise-Robust Iterative Back-Projection

Noisy image super-resolution (SR) is a significant challenging process due to the smoothness caused by denoising. Iterative back-projection (IBP) can be helpful in further enhancing the reconstructed SR image, but there is no clean reference image available. This paper proposes a novel back-projecti...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 16. Sept.
1. Verfasser: Yoo, Jun-Sang (VerfasserIn)
Weitere Verfasser: Kim, Jong-Ok
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Noisy image super-resolution (SR) is a significant challenging process due to the smoothness caused by denoising. Iterative back-projection (IBP) can be helpful in further enhancing the reconstructed SR image, but there is no clean reference image available. This paper proposes a novel back-projection algorithm for noisy image SR. Its main goal is to pursuit the consistency between LR and SR images. We aim to estimate the clean reconstruction error to be back-projected, using the noisy and denoised reconstruction errors. We formulate a new cost function on the principal component analysis (PCA) transform domain to estimate the clean reconstruction error. In the data term of the cost function, noisy and denoised reconstruction errors are combined in a region-adaptive manner using texture probability. In addition, the sparsity constraint is incorporated into the regularization term, based on the Laplacian characteristics of the reconstruction error. Finally, we propose an eigenvector estimation method to minimize the effect of noise. The experimental results demonstrate that the proposed method can perform back-projection in a more noise-robust manner than the conventional IBP, and harmoniously work with any other SR methods as a post-processing
Beschreibung:Date Revised 27.02.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1941-0042
DOI:10.1109/TIP.2019.2940414