Surface-Aware Blind Image Deblurring

Blind image deblurring is a conundrum because there are infinitely many pairs of latent image and blur kernel. To get a stable and reasonable deblurred image, proper prior knowledge of the latent image and the blur kernel is urgently required. Different from the recent works on the statistical obser...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 3 vom: 19. März, Seite 1041-1055
1. Verfasser: Liu, Jun (VerfasserIn)
Weitere Verfasser: Yan, Ming, Zeng, Tieyong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM30144188X
003 DE-627
005 20231225104630.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2941472  |2 doi 
028 5 2 |a pubmed24n1004.xml 
035 |a (DE-627)NLM30144188X 
035 |a (NLM)31535982 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Jun  |e verfasserin  |4 aut 
245 1 0 |a Surface-Aware Blind Image Deblurring 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.02.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Blind image deblurring is a conundrum because there are infinitely many pairs of latent image and blur kernel. To get a stable and reasonable deblurred image, proper prior knowledge of the latent image and the blur kernel is urgently required. Different from the recent works on the statistical observations of the difference between the blurred image and the clean one, our method is built on the surface-aware strategy arising from the intrinsic geometrical consideration. This approach facilitates the blur kernel estimation due to the preserved sharp edges in the intermediate latent image. Extensive experiments demonstrate that our method outperforms the state-of-the-art methods on deblurring the text and natural images. Moreover, our method can achieve attractive results in some challenging cases, such as low-illumination images with large saturated regions and impulse noise. A direct extension of our method to the non-uniform deblurring problem also validates the effectiveness of the surface-aware prior 
650 4 |a Journal Article 
700 1 |a Yan, Ming  |e verfasserin  |4 aut 
700 1 |a Zeng, Tieyong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 3 vom: 19. März, Seite 1041-1055  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:3  |g day:19  |g month:03  |g pages:1041-1055 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2941472  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 3  |b 19  |c 03  |h 1041-1055