|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM301411042 |
003 |
DE-627 |
005 |
20240721231925.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201904720
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1477.xml
|
035 |
|
|
|a (DE-627)NLM301411042
|
035 |
|
|
|a (NLM)31532880
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a López Barreiro, Diego
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Conductive Silk-Based Composites Using Biobased Carbon Materials
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 24.01.2020
|
500 |
|
|
|a Date Revised 21.07.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a There is great interest in developing conductive biomaterials for the manufacturing of sensors or flexible electronics with applications in healthcare, tracking human motion, or in situ strain measurements. These biomaterials aim to overcome the mismatch in mechanical properties at the interface between typical rigid semiconductor sensors and soft, often uneven biological surfaces or tissues for in vivo and ex vivo applications. Here, the use of biobased carbons to fabricate conductive, highly stretchable, flexible, and biocompatible silk-based composite biomaterials is demonstrated. Biobased carbons are synthesized via hydrothermal processing, an aqueous thermochemical method that converts biomass into a carbonaceous material that can be applied upon activation as conductive filler in composite biomaterials. Experimental synthesis and full-atomistic molecular dynamics modeling are combined to synthesize and characterize these conductive composite biomaterials, made entirely from renewable sources and with promising applications in fields like biomedicine, energy, and electronics
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a biocarbon
|
650 |
|
4 |
|a bioinspired materials
|
650 |
|
4 |
|a biomass
|
650 |
|
4 |
|a biomaterials
|
650 |
|
4 |
|a composites
|
650 |
|
4 |
|a nanomaterials
|
650 |
|
4 |
|a silk
|
650 |
|
7 |
|a Biocompatible Materials
|2 NLM
|
650 |
|
7 |
|a Chitin
|2 NLM
|
650 |
|
7 |
|a 1398-61-4
|2 NLM
|
650 |
|
7 |
|a Graphite
|2 NLM
|
650 |
|
7 |
|a 7782-42-5
|2 NLM
|
650 |
|
7 |
|a Fibroins
|2 NLM
|
650 |
|
7 |
|a 9007-76-5
|2 NLM
|
700 |
1 |
|
|a Martín-Moldes, Zaira
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yeo, Jingjie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shen, Sabrina
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hawker, Morgan J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Martin-Martinez, Francisco J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kaplan, David L
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Buehler, Markus J
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 31(2019), 44 vom: 18. Nov., Seite e1904720
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:31
|g year:2019
|g number:44
|g day:18
|g month:11
|g pages:e1904720
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201904720
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 31
|j 2019
|e 44
|b 18
|c 11
|h e1904720
|