Visual Cause Analytics for Traffic Congestion

Urban traffic congestion has become an important issue not only affecting our daily lives, but also limiting economic development. The primary cause of urban traffic congestion is that the number of vehicles is higher than the permissible limit of the road. Previous studies have focused on dispersin...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1998. - 27(2021), 3 vom: 11. März, Seite 2186-2201
1. Verfasser: Pi, Mingyu (VerfasserIn)
Weitere Verfasser: Yeon, Hanbyul, Son, Hyesook, Jang, Yun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM301227047
003 DE-627
005 20250225234359.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2019.2940580  |2 doi 
028 5 2 |a pubmed25n1003.xml 
035 |a (DE-627)NLM301227047 
035 |a (NLM)31514142 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pi, Mingyu  |e verfasserin  |4 aut 
245 1 0 |a Visual Cause Analytics for Traffic Congestion 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 29.01.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Urban traffic congestion has become an important issue not only affecting our daily lives, but also limiting economic development. The primary cause of urban traffic congestion is that the number of vehicles is higher than the permissible limit of the road. Previous studies have focused on dispersing traffic volume by detecting urban traffic congestion zones and predicting future trends. However, to solve the fundamental problem, it is necessary to discover the cause of traffic congestion. Nevertheless, it is difficult to find a research which presents an approach to identify the causes of traffic congestion. In this paper, we propose a technique to analyze the cause of traffic congestion based on the traffic flow theory. We extract vehicle flows from traffic data, such as GPS trajectory and Vehicle Detector data. We detect vehicle flow changes utilizing the entropy from the information theory. Then, we build cumulative vehicle count curves (N-curve) that can quantify the flow of the vehicles in the traffic congestion area. The N-curves are classified into four different traffic congestion patterns by a convolutional neural network. Analyzing the causes and influence of traffic congestion is difficult and requires considerable experience and knowledge. Therefore, we present a visual analytics system that can efficiently perform a series of processes to analyze the cause and influence of traffic congestion. Through case studies, we have evaluated that our system can classify the causes of traffic congestion and can be used efficiently in road planning 
650 4 |a Journal Article 
700 1 |a Yeon, Hanbyul  |e verfasserin  |4 aut 
700 1 |a Son, Hyesook  |e verfasserin  |4 aut 
700 1 |a Jang, Yun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1998  |g 27(2021), 3 vom: 11. März, Seite 2186-2201  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:3  |g day:11  |g month:03  |g pages:2186-2201 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2019.2940580  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 3  |b 11  |c 03  |h 2186-2201