Double-Vacancy Controlled Friction on Graphene : The Enhancement of Atomic Pinning

The vacancy-enhanced contact friction of graphene is mainly attributed to the vacancy-enhanced out-of-plane deformation flexibility of the graphene and the climbing of the tip out of the vacancy trap (which actually acts as a step edge). However, this mechanism does not apply for explaining the enha...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 35(2019), 40 vom: 08. Okt., Seite 12898-12907
1. Verfasser: Shen, Bin (VerfasserIn)
Weitere Verfasser: Lin, Qiang, Chen, Sulin, Huang, Zhewei, Ji, Zhe, Cao, Anbo, Zhang, Zhinan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM301219885
003 DE-627
005 20250225234156.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.9b01672  |2 doi 
028 5 2 |a pubmed25n1003.xml 
035 |a (DE-627)NLM301219885 
035 |a (NLM)31513424 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shen, Bin  |e verfasserin  |4 aut 
245 1 0 |a Double-Vacancy Controlled Friction on Graphene  |b The Enhancement of Atomic Pinning 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.03.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The vacancy-enhanced contact friction of graphene is mainly attributed to the vacancy-enhanced out-of-plane deformation flexibility of the graphene and the climbing of the tip out of the vacancy trap (which actually acts as a step edge). However, this mechanism does not apply for explaining the enhanced friction caused by small-sized vacancies that are unable to accommodate the tip, such as single vacancy and double vacancies, which also commonly exist in the graphene. In the present study, by performing a set of classic molecular dynamics simulations, we demonstrated that the double-vacancy defect in graphene substantially enhanced the contact friction when the tip slides over it and the pinning effect of the reconstructed lattice of the double-vacancy defect with atoms at the bottom of the tip dominated such an influence. The underlying mechanism of such an atomic pinning effect and the influence of the normal load, sliding direction, and the sliding velocity were unveiled by analyzing the obtained friction evolution and the atomic configuration and interaction between the tip and the graphene. We believe that the findings presented in this study complete the state-of-art understanding of the nanoscale friction behaviors of vacancy-defected graphene, which is essential for the implementation of their potential control 
650 4 |a Journal Article 
700 1 |a Lin, Qiang  |e verfasserin  |4 aut 
700 1 |a Chen, Sulin  |e verfasserin  |4 aut 
700 1 |a Huang, Zhewei  |e verfasserin  |4 aut 
700 1 |a Ji, Zhe  |e verfasserin  |4 aut 
700 1 |a Cao, Anbo  |e verfasserin  |4 aut 
700 1 |a Zhang, Zhinan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1985  |g 35(2019), 40 vom: 08. Okt., Seite 12898-12907  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:35  |g year:2019  |g number:40  |g day:08  |g month:10  |g pages:12898-12907 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.9b01672  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 35  |j 2019  |e 40  |b 08  |c 10  |h 12898-12907