Anticooperativity of FH···Cl- hydrogen bonds in [FH)n Cl]- clusters (n = 1…6)
© 2019 Wiley Periodicals, Inc.
Publié dans: | Journal of computational chemistry. - 1984. - 40(2019), 32 vom: 15. Dez., Seite 2858-2867 |
---|---|
Auteur principal: | |
Autres auteurs: | , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2019
|
Accès à la collection: | Journal of computational chemistry |
Sujets: | Journal Article cooperativity hydrogen bond energy hydrogen bonds nucleation solvation |
Résumé: | © 2019 Wiley Periodicals, Inc. The change of cooperativity of FH···Cl- hydrogen bonds upon sequential addition of up to six FH molecules to the Cl- first coordination sphere is investigated. The geometry of clusters [(FH) n Cl]- (n = 1…6) was calculated (CCSD/aug-cc-pVDZ) and compared with [(FH) n F]- clusters. The geometry is determined by the symmetry-driven electrostatic requirements and also by the fact that formation of each new FH···Cl- bond creates a depression in the chlorine's electron cloud on the opposite side of Cl- (σ-hole), which limits the range of directions available for subsequent H-bond formation. The mutual influence of FH···Cl- hydrogen bonds is anticooperative-the addition of each FH molecule weakens H-bonds by 23-16% and decreases their covalent character (as seen by LMO-EDA decomposition and QTAIM analysis). Anticooperativity effects could be tracked by spectroscopic parameters (frequency of local HF mode νFH , chemical shift δH , spin-spin coupling constants 1 JFH , 1h JHCl , 2h JFCl and nuclear quadrupolar constants χ18F , χD , and χ35Cl . © 2019 Wiley Periodicals, Inc |
---|---|
Description: | Date Revised 04.03.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1096-987X |
DOI: | 10.1002/jcc.26066 |