Characterization of the transient fluorescence wave phenomenon that occurs during H2 production in Chlamydomonas reinhardtii

© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 70(2019), 21 vom: 18. Nov., Seite 6321-6336
1. Verfasser: Krishna, Pilla Sankara (VerfasserIn)
Weitere Verfasser: Morello, Giorgio, Mamedov, Fikret
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Chlamydomonas reinhardtii hydrogen production plastoquinone pool sulfur deprivation type II NDH variable fluorescence Algal Proteins Photosystem I Protein Complex mehr... Gramicidin 1405-97-6 Hydrogen 7YNJ3PO35Z Plastoquinone OAC30J69CN
Beschreibung
Zusammenfassung:© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology.
The redox state of the plastoquinone (PQ) pool in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cells was studied using single flash-induced variable fluorescence decay kinetics. During H2 production, the fluorescence decay kinetics exhibited an unusual post-illumination rise of variable fluorescence, giving a wave-like appearance. The wave showed the transient fluorescence minimum at ~60 ms after the flash, followed by a rise, reaching the transient fluorescence maximum at ~1 s after the flash, before decaying back to the initial fluorescence level. Similar wave-like fluorescence decay kinetics have been reported previously in anaerobically incubated cyanobacteria but not in green algae. From several different electron and proton transfer inhibitors used, polymyxin B, an inhibitor of type II NAD(P)H dehydrogenase (NDA2), had the effect of eliminating the fluorescence wave feature, indicating involvement of NDA2 in this phenomenon. This was further confirmed by the absence of the fluorescence wave in the Δnda2 mutant lacking NDA2. Additionally, Δnda2 mutants have also shown delayed and diminished H2 production (only 23% if compared with the wild type). Our results show that the fluorescence wave phenomenon in C. reinhardtii is observed under highly reducing conditions and is induced by the NDA2-mediated electron flow from the reduced stromal components to the PQ pool. Therefore, the fluorescence wave phenomenon is a sensitive probe for the complex network of redox reactions at the PQ pool level in the thylakoid membrane. It could be used in further characterization and improvement of the electron transfer pathways leading to H2 production in C. reinhardtii
Beschreibung:Date Completed 10.08.2020
Date Revised 10.08.2020
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erz380