Learning Part-based Convolutional Features for Person Re-Identification

Part-level features offer fine granularity for pedestrian image description. In this article, we generally aim to learn discriminative part-informed feature for person re-identification. Our contribution is two-fold. First, we introduce a general part-level feature learning method, named Part-based...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 3 vom: 10. März, Seite 902-917
1. Verfasser: Sun, Yifan (VerfasserIn)
Weitere Verfasser: Zheng, Liang, Li, Yali, Yang, Yi, Tian, Qi, Wang, Shengjin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM30111773X
003 DE-627
005 20231225103951.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2938523  |2 doi 
028 5 2 |a pubmed24n1003.xml 
035 |a (DE-627)NLM30111773X 
035 |a (NLM)31502963 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sun, Yifan  |e verfasserin  |4 aut 
245 1 0 |a Learning Part-based Convolutional Features for Person Re-Identification 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.09.2021 
500 |a Date Revised 29.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Part-level features offer fine granularity for pedestrian image description. In this article, we generally aim to learn discriminative part-informed feature for person re-identification. Our contribution is two-fold. First, we introduce a general part-level feature learning method, named Part-based Convolutional Baseline (PCB). Given an image input, it outputs a convolutional descriptor consisting of several part-level features. PCB is general in that it is able to accommodate several part partitioning strategies, including pose estimation, human parsing and uniform part partitioning. In experiment, we show that the learned descriptor has a significantly higher discriminative ability than the global descriptor. Second, based on PCB, we propose refined part pooling (RPP), which allows the parts to be more precisely located. Our idea is that pixels within a well-located part should be similar to each other while being dissimilar with pixels from other parts. We call it within-part consistency. When a pixel-wise feature vector in a part is more similar to some other part, it is then an outlier, indicating inappropriate partitioning. RPP re-assigns these outliers to the parts they are closest to, resulting in refined parts with enhanced within-part consistency. RPP requires no part labels and is trained in a weakly supervised manner. Experiment confirms that RPP allows PCB to gain another round of performance boost. For instance, on the Market-1501 dataset, we achieve (77.4+4.2) percent mAP and (92.3+1.5) percent rank-1 accuracy, a competitive performance with the state of the art 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zheng, Liang  |e verfasserin  |4 aut 
700 1 |a Li, Yali  |e verfasserin  |4 aut 
700 1 |a Yang, Yi  |e verfasserin  |4 aut 
700 1 |a Tian, Qi  |e verfasserin  |4 aut 
700 1 |a Wang, Shengjin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 3 vom: 10. März, Seite 902-917  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:3  |g day:10  |g month:03  |g pages:902-917 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2938523  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 3  |b 10  |c 03  |h 902-917