Recent Progress in Methanol-to-Olefins (MTO) Catalysts
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 50 vom: 15. Dez., Seite e1902181 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article Review heterogeneous catalysis hydrothermal synthesis methanol-to-olefins molecular sieves shape selective catalysts |
Zusammenfassung: | © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Methanol conversion to olefins, as an important reaction in C1 chemistry, provides an alternative platform for producing basic chemicals from nonpetroleum resources such as natural gas and coal. Methanol-to-olefin (MTO) catalysis is one of the critical constraints for the process development, determining the reactor design, and the profitability of the process. After the construction and commissioning of the world's first MTO plant by Dalian Institute of Chemical Physics, based on high-efficiency catalyst and fluidization technology in 2010, more attention has been attracted for a deep understanding of the reaction mechanism and catalysis principle, which has led to the continuous development of catalysts and processes. Herein, the recent progress in MTO catalyst development is summarized, focusing on the advances in the optimization of SAPO-34 catalysts, together with the development efforts on catalysts with preferential ethylene or propylene selectivity |
---|---|
Beschreibung: | Date Completed 16.12.2019 Date Revised 01.10.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201902181 |