On the Global Geometry of Sphere-Constrained Sparse Blind Deconvolution

Blind deconvolution is the problem of recovering a convolutional kernel a0 and an activation signal x0 from their convolution [Formula: see text]. This problem is ill-posed without further constraints or priors. This paper studies the situation where the nonzero entries in the activation signal are...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 3 vom: 15. März, Seite 999-1008
1. Verfasser: Zhang, Yuqian (VerfasserIn)
Weitere Verfasser: Lau, Yenson, Kuo, Han-Wen, Cheung, Sky, Pasupathy, Abhay, Wright, John
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM301034745
003 DE-627
005 20231225103807.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2939237  |2 doi 
028 5 2 |a pubmed24n1003.xml 
035 |a (DE-627)NLM301034745 
035 |a (NLM)31494544 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Yuqian  |e verfasserin  |4 aut 
245 1 0 |a On the Global Geometry of Sphere-Constrained Sparse Blind Deconvolution 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.02.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Blind deconvolution is the problem of recovering a convolutional kernel a0 and an activation signal x0 from their convolution [Formula: see text]. This problem is ill-posed without further constraints or priors. This paper studies the situation where the nonzero entries in the activation signal are sparsely and randomly populated. We normalize the convolution kernel to have unit Frobenius norm and cast the sparse blind deconvolution problem as a nonconvex optimization problem over the sphere. With this spherical constraint, every spurious local minimum turns out to be close to some signed shift truncation of the ground truth, under certain hypotheses. This benign property motivates an effective two stage algorithm that recovers the ground truth from the partial information offered by a suboptimal local minimum. This geometry-inspired algorithm recovers the ground truth for certain microscopy problems, also exhibits promising performance in the more challenging image deblurring problem. Our insights into the global geometry and the two stage algorithm extend to the convolutional dictionary learning problem, where a superposition of multiple convolution signals is observed 
650 4 |a Journal Article 
700 1 |a Lau, Yenson  |e verfasserin  |4 aut 
700 1 |a Kuo, Han-Wen  |e verfasserin  |4 aut 
700 1 |a Cheung, Sky  |e verfasserin  |4 aut 
700 1 |a Pasupathy, Abhay  |e verfasserin  |4 aut 
700 1 |a Wright, John  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 3 vom: 15. März, Seite 999-1008  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:3  |g day:15  |g month:03  |g pages:999-1008 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2939237  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 3  |b 15  |c 03  |h 999-1008