|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM301034745 |
003 |
DE-627 |
005 |
20231225103807.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2019.2939237
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1003.xml
|
035 |
|
|
|a (DE-627)NLM301034745
|
035 |
|
|
|a (NLM)31494544
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhang, Yuqian
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a On the Global Geometry of Sphere-Constrained Sparse Blind Deconvolution
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 05.02.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Blind deconvolution is the problem of recovering a convolutional kernel a0 and an activation signal x0 from their convolution [Formula: see text]. This problem is ill-posed without further constraints or priors. This paper studies the situation where the nonzero entries in the activation signal are sparsely and randomly populated. We normalize the convolution kernel to have unit Frobenius norm and cast the sparse blind deconvolution problem as a nonconvex optimization problem over the sphere. With this spherical constraint, every spurious local minimum turns out to be close to some signed shift truncation of the ground truth, under certain hypotheses. This benign property motivates an effective two stage algorithm that recovers the ground truth from the partial information offered by a suboptimal local minimum. This geometry-inspired algorithm recovers the ground truth for certain microscopy problems, also exhibits promising performance in the more challenging image deblurring problem. Our insights into the global geometry and the two stage algorithm extend to the convolutional dictionary learning problem, where a superposition of multiple convolution signals is observed
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Lau, Yenson
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kuo, Han-Wen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cheung, Sky
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pasupathy, Abhay
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wright, John
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 43(2021), 3 vom: 15. März, Seite 999-1008
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:43
|g year:2021
|g number:3
|g day:15
|g month:03
|g pages:999-1008
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2019.2939237
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 43
|j 2021
|e 3
|b 15
|c 03
|h 999-1008
|