Mapping Groundwater Potential Through an Ensemble of Big Data Methods

© 2019, National Ground Water Association.

Bibliographische Detailangaben
Veröffentlicht in:Ground water. - 1979. - 58(2020), 4 vom: 04. Juli, Seite 583-597
1. Verfasser: Martínez-Santos, P (VerfasserIn)
Weitere Verfasser: Renard, P
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Ground water
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM300951191
003 DE-627
005 20231225103621.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1111/gwat.12939  |2 doi 
028 5 2 |a pubmed24n1003.xml 
035 |a (DE-627)NLM300951191 
035 |a (NLM)31486070 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Martínez-Santos, P  |e verfasserin  |4 aut 
245 1 0 |a Mapping Groundwater Potential Through an Ensemble of Big Data Methods 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.11.2020 
500 |a Date Revised 04.11.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2019, National Ground Water Association. 
520 |a Groundwater resources are crucial to safe drinking supplies in sub-Saharan Africa, and will be increasingly relied upon in a context of climate change. The need to better understand groundwater calls for innovative approaches to make the best out of the existing information. A methodology to map groundwater potential based on an ensemble of machine learning classifiers is presented. A large borehole database (n = 1848) was integrated into a Geographic Information Systems (GIS) environment and used to train, validate and test 12 machine learning algorithms. Each classifier predicts a binary target (positive or negative borehole) based on the minimum flow rate required for communal domestic supplies. Classification is based on a number of explanatory variables, including landforms, lineaments, soil, vegetation, geology and slope, among others. Correlations between the target and explanatory variables were then generalized to develop groundwater potential maps. Most algorithms attained success rates between 80% and 96% in terms of test score, which suggests that the outcomes provide an accurate picture of field conditions. Statistical learners were observed to perform better than most other algorithms, excepting random forests and support vector machines. Furthermore, it is concluded that the ensemble approach provides added value by incorporating a measure of uncertainty to the results. This technique may be used to rapidly map groundwater potential for rural supply or humanitarian emergencies in areas where there is sufficient historical data but where comprehensive field work is unfeasible 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Renard, P  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Ground water  |d 1979  |g 58(2020), 4 vom: 04. Juli, Seite 583-597  |w (DE-627)NLM098182528  |x 1745-6584  |7 nnns 
773 1 8 |g volume:58  |g year:2020  |g number:4  |g day:04  |g month:07  |g pages:583-597 
856 4 0 |u http://dx.doi.org/10.1111/gwat.12939  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 58  |j 2020  |e 4  |b 04  |c 07  |h 583-597