Explaining Vulnerabilities to Adversarial Machine Learning through Visual Analytics

Machine learning models are currently being deployed in a variety of real-world applications where model predictions are used to make decisions about healthcare, bank loans, and numerous other critical tasks. As the deployment of artificial intelligence technologies becomes ubiquitous, it is unsurpr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 26(2020), 1 vom: 28. Jan., Seite 1075-1085
1. Verfasser: Ma, Yuxin (VerfasserIn)
Weitere Verfasser: Xie, Tiankai, Li, Jundong, Maciejewski, Ross
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM300880561
003 DE-627
005 20231225103450.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2019.2934631  |2 doi 
028 5 2 |a pubmed24n1002.xml 
035 |a (DE-627)NLM300880561 
035 |a (NLM)31478859 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ma, Yuxin  |e verfasserin  |4 aut 
245 1 0 |a Explaining Vulnerabilities to Adversarial Machine Learning through Visual Analytics 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.03.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Machine learning models are currently being deployed in a variety of real-world applications where model predictions are used to make decisions about healthcare, bank loans, and numerous other critical tasks. As the deployment of artificial intelligence technologies becomes ubiquitous, it is unsurprising that adversaries have begun developing methods to manipulate machine learning models to their advantage. While the visual analytics community has developed methods for opening the black box of machine learning models, little work has focused on helping the user understand their model vulnerabilities in the context of adversarial attacks. In this paper, we present a visual analytics framework for explaining and exploring model vulnerabilities to adversarial attacks. Our framework employs a multi-faceted visualization scheme designed to support the analysis of data poisoning attacks from the perspective of models, data instances, features, and local structures. We demonstrate our framework through two case studies on binary classifiers and illustrate model vulnerabilities with respect to varying attack strategies 
650 4 |a Journal Article 
700 1 |a Xie, Tiankai  |e verfasserin  |4 aut 
700 1 |a Li, Jundong  |e verfasserin  |4 aut 
700 1 |a Maciejewski, Ross  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 26(2020), 1 vom: 28. Jan., Seite 1075-1085  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:26  |g year:2020  |g number:1  |g day:28  |g month:01  |g pages:1075-1085 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2019.2934631  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2020  |e 1  |b 28  |c 01  |h 1075-1085