Cardiac ScoreCard : A Diagnostic Multivariate Index Assay System for Predicting a Spectrum of Cardiovascular Disease

Clinical decision support systems (CDSSs) have the potential to save lives and reduce unnecessary costs through early detection and frequent monitoring of both traditional risk factors and novel biomarkers for cardiovascular disease (CVD). However, the widespread adoption of CDSSs for the identifica...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications. - 1999. - 54(2016) vom: 15. Juli, Seite 136-147
1. Verfasser: McRae, Michael P (VerfasserIn)
Weitere Verfasser: Bozkurt, Biykem, Ballantyne, Christie M, Sanchez, Ximena, Christodoulides, Nicolaos, Simmons, Glennon, Nambi, Vijay, Misra, Arunima, Miller, Craig S, Ebersole, Jeffrey L, Campbell, Charles, McDevitt, John T
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Expert systems with applications
Schlagworte:Journal Article Cardiovascular disease (CVD) biomarkers cardiac wellness heart failure (HF) lasso logistic regression programmable bio-nano-chip (p-BNC)
LEADER 01000caa a22002652 4500
001 NLM300768508
003 DE-627
005 20240719232244.0
007 cr uuu---uuuuu
008 231225s2016 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.eswa.2016.01.029  |2 doi 
028 5 2 |a pubmed24n1475.xml 
035 |a (DE-627)NLM300768508 
035 |a (NLM)31467464 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a McRae, Michael P  |e verfasserin  |4 aut 
245 1 0 |a Cardiac ScoreCard  |b A Diagnostic Multivariate Index Assay System for Predicting a Spectrum of Cardiovascular Disease 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 19.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Clinical decision support systems (CDSSs) have the potential to save lives and reduce unnecessary costs through early detection and frequent monitoring of both traditional risk factors and novel biomarkers for cardiovascular disease (CVD). However, the widespread adoption of CDSSs for the identification of heart diseases has been limited, likely due to the poor interpretability of clinically relevant results and the lack of seamless integration between measurements and disease predictions. In this paper we present the Cardiac ScoreCard-a multivariate index assay system with the potential to assist in the diagnosis and prognosis of a spectrum of CVD. The Cardiac ScoreCard system is based on lasso logistic regression techniques which utilize both patient demographics and novel biomarker data for the prediction of heart failure (HF) and cardiac wellness. Lasso logistic regression models were trained on a merged clinical dataset comprising 579 patients with 6 traditional risk factors and 14 biomarker measurements. The prediction performance of the Cardiac ScoreCard was assessed with 5-fold cross-validation and compared with reference methods. The experimental results reveal that the ScoreCard models improved performance in discriminating disease versus non-case (AUC = 0.8403 and 0.9412 for cardiac wellness and HF, respectively), and the models exhibit good calibration. Clinical insights to the prediction of HF and cardiac wellness are provided in the form of logistic regression coefficients which suggest that augmenting the traditional risk factors with a multimarker panel spanning a diverse cardiovascular pathophysiology provides improved performance over reference methods. Additionally, a framework is provided for seamless integration with biomarker measurements from point-of-care medical microdevices, and a lasso-based feature selection process is described for the down-selection of biomarkers in multimarker panels 
650 4 |a Journal Article 
650 4 |a Cardiovascular disease (CVD) 
650 4 |a biomarkers 
650 4 |a cardiac wellness 
650 4 |a heart failure (HF) 
650 4 |a lasso logistic regression 
650 4 |a programmable bio-nano-chip (p-BNC) 
700 1 |a Bozkurt, Biykem  |e verfasserin  |4 aut 
700 1 |a Ballantyne, Christie M  |e verfasserin  |4 aut 
700 1 |a Sanchez, Ximena  |e verfasserin  |4 aut 
700 1 |a Christodoulides, Nicolaos  |e verfasserin  |4 aut 
700 1 |a Simmons, Glennon  |e verfasserin  |4 aut 
700 1 |a Nambi, Vijay  |e verfasserin  |4 aut 
700 1 |a Misra, Arunima  |e verfasserin  |4 aut 
700 1 |a Miller, Craig S  |e verfasserin  |4 aut 
700 1 |a Ebersole, Jeffrey L  |e verfasserin  |4 aut 
700 1 |a Campbell, Charles  |e verfasserin  |4 aut 
700 1 |a McDevitt, John T  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Expert systems with applications  |d 1999  |g 54(2016) vom: 15. Juli, Seite 136-147  |w (DE-627)NLM098196782  |x 0957-4174  |7 nnns 
773 1 8 |g volume:54  |g year:2016  |g day:15  |g month:07  |g pages:136-147 
856 4 0 |u http://dx.doi.org/10.1016/j.eswa.2016.01.029  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 54  |j 2016  |b 15  |c 07  |h 136-147