|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM300735073 |
003 |
DE-627 |
005 |
20250225213744.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201902343
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1002.xml
|
035 |
|
|
|a (DE-627)NLM300735073
|
035 |
|
|
|a (NLM)31464046
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yao, Shanshan
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Nanomaterial-Enabled Flexible and Stretchable Sensing Systems
|b Processing, Integration, and Applications
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 22.12.2020
|
500 |
|
|
|a Date Revised 22.12.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Nanomaterial-enabled flexible and stretchable electronics have seen tremendous progress in recent years, evolving from single sensors to integrated sensing systems. Compared with nanomaterial-enabled sensors with a single function, integration of multiple sensors is conducive to comprehensive monitoring of personal health and environment, intelligent human-machine interfaces, and realistic imitation of human skin in robotics and prosthetics. Integration of sensors with other functional components promotes real-world applications of the sensing systems. Here, an overview of the design and integration strategies and manufacturing techniques for such sensing systems is given. Then, representative nanomaterial-enabled flexible and stretchable sensing systems are presented. Following that, representative applications in personal health, fitness tracking, electronic skins, artificial nervous systems, and human-machine interactions are provided. To conclude, perspectives on the challenges and opportunities in this burgeoning field are considered
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a electronic skins
|
650 |
|
4 |
|a flexible and stretchable systems
|
650 |
|
4 |
|a flexible hybrid electronics
|
650 |
|
4 |
|a health and fitness tracking
|
650 |
|
4 |
|a human-machine interfaces
|
650 |
|
7 |
|a Volatile Organic Compounds
|2 NLM
|
700 |
1 |
|
|a Ren, Ping
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Song, Runqiao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Yuxuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Qijin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dong, Jingyan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a O'Connor, Brendan T
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Yong
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 32(2020), 15 vom: 22. Apr., Seite e1902343
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:32
|g year:2020
|g number:15
|g day:22
|g month:04
|g pages:e1902343
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201902343
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2020
|e 15
|b 22
|c 04
|h e1902343
|