Integrating patterns of thermal tolerance and phenotypic plasticity with population genetics to improve understanding of vulnerability to warming in a widespread copepod

© 2019 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 25(2019), 12 vom: 28. Dez., Seite 4147-4164
1. Verfasser: Sasaki, Matthew C (VerfasserIn)
Weitere Verfasser: Dam, Hans G
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article climate change climate variability hypothesis copepod gene flow local adaptation macrophysiology phenotypic plasticity plankton rapid adaptation thermal performance
LEADER 01000naa a22002652 4500
001 NLM300589956
003 DE-627
005 20231225102836.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.14811  |2 doi 
028 5 2 |a pubmed24n1001.xml 
035 |a (DE-627)NLM300589956 
035 |a (NLM)31449341 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sasaki, Matthew C  |e verfasserin  |4 aut 
245 1 0 |a Integrating patterns of thermal tolerance and phenotypic plasticity with population genetics to improve understanding of vulnerability to warming in a widespread copepod 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.11.2019 
500 |a Date Revised 08.01.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2019 John Wiley & Sons Ltd. 
520 |a Differences in population vulnerability to warming are defined by spatial patterns in thermal adaptation. These patterns may be driven by natural selection over spatial environmental gradients, but can also be shaped by gene flow, especially in marine taxa with high dispersal potential. Understanding and predicting organismal responses to warming requires disentangling the opposing effects of selection and gene flow. We begin by documenting genetic divergence of thermal tolerance and developmental phenotypic plasticity. Ten populations of the widespread copepod Acartia tonsa were collected from sites across a large thermal gradient, ranging from the Florida Keys to Northern New Brunswick, Canada (spanning over 20° latitude). Thermal performance curves (TPCs) from common garden experiments revealed local adaptation at the sampling range extremes, with thermal tolerance increasing at low latitudes and decreasing at high latitudes. The opposite pattern was observed in phenotypic plasticity, which was strongest at high latitudes. No relationship was observed between phenotypic plasticity and environmental variables. Instead, the results are consistent with the hypothesis of a trade-off between thermal tolerance and the strength of phenotypic plasticity. Over a large portion of the sampled range, however, we observed a remarkable lack of differentiation of TPCs. To examine whether this lack of divergence is the result of selection for a generalist performance curve or constraint by gene flow, we analyzed cytochrome oxidase I mtDNA sequences, which revealed four distinct genetic clades, abundant genetic diversity, and widely distributed haplotypes. Strong divergence in thermal performance within genetic clades, however, suggests that the pace of thermal adaptation can be relatively rapid. The combined insight from the laboratory physiological experiments and genetic data indicate that gene flow constrains differentiation of TPCs. This balance between gene flow and selection has implications for patterns of vulnerability to warming. Taking both genetic differentiation and phenotypic plasticity into account, our results suggest that local adaptation does not increase vulnerability to warming, and that low-latitude populations in general may be more vulnerable to predicted temperature change over the next century 
650 4 |a Journal Article 
650 4 |a climate change 
650 4 |a climate variability hypothesis 
650 4 |a copepod 
650 4 |a gene flow 
650 4 |a local adaptation 
650 4 |a macrophysiology 
650 4 |a phenotypic plasticity 
650 4 |a plankton 
650 4 |a rapid adaptation 
650 4 |a thermal performance 
700 1 |a Dam, Hans G  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 25(2019), 12 vom: 28. Dez., Seite 4147-4164  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:25  |g year:2019  |g number:12  |g day:28  |g month:12  |g pages:4147-4164 
856 4 0 |u http://dx.doi.org/10.1111/gcb.14811  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2019  |e 12  |b 28  |c 12  |h 4147-4164