|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM300581343 |
003 |
DE-627 |
005 |
20231225102827.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201904182
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1001.xml
|
035 |
|
|
|a (DE-627)NLM300581343
|
035 |
|
|
|a (NLM)31448465
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Jordan, Jack W
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Host-Guest Hybrid Redox Materials Self-Assembled from Polyoxometalates and Single-Walled Carbon Nanotubes
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 14.10.2019
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a The development of next-generation molecular-electronic, electrocatalytic, and energy-storage systems depends on the availability of robust materials in which molecular charge-storage sites and conductive hosts are in intimate contact. It is shown here that electron transfer from single-walled carbon nanotubes (SWNTs) to polyoxometalate (POM) clusters results in the spontaneous formation of host-guest POMSWNT redox-active hybrid materials. The SWNTs can conduct charge to and from the encapsulated guest molecules, allowing electrical access to >90% of the encapsulated redox species. Furthermore, the SWNT hosts provide a physical barrier, protecting the POMs from chemical degradation during charging/discharging and facilitating efficient electron transfer throughout the composite, even in electrolytes that usually destroy POMs
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a carbon nanotubes
|
650 |
|
4 |
|a electrochemistry
|
650 |
|
4 |
|a nanoconfinement
|
650 |
|
4 |
|a polyoxometalates
|
650 |
|
4 |
|a redox materials
|
700 |
1 |
|
|a Lowe, Grace A
|e verfasserin
|4 aut
|
700 |
1 |
|
|a McSweeney, Robert L
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Stoppiello, Craig T
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lodge, Rhys W
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Skowron, Stephen T
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Biskupek, Johannes
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Rance, Graham A
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kaiser, Ute
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Walsh, Darren A
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Newton, Graham N
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Khlobystov, Andrei N
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 31(2019), 41 vom: 22. Okt., Seite e1904182
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:31
|g year:2019
|g number:41
|g day:22
|g month:10
|g pages:e1904182
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201904182
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 31
|j 2019
|e 41
|b 22
|c 10
|h e1904182
|