VisTA : Integrating Machine Intelligence with Visualization to Support the Investigation of Think-Aloud Sessions

Think-aloud protocols are widely used by user experience (UX) practitioners in usability testing to uncover issues in user interface design. It is often arduous to analyze large amounts of recorded think-aloud sessions and few UX practitioners have an opportunity to get a second perspective during t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 26(2020), 1 vom: 22. Jan., Seite 343-352
1. Verfasser: Fan, Mingming (VerfasserIn)
Weitere Verfasser: Wu, Ke, Zhao, Jian, Li, Yue, Wei, Winter, Truong, Khai N
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM300527403
003 DE-627
005 20231225102722.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2019.2934797  |2 doi 
028 5 2 |a pubmed24n1001.xml 
035 |a (DE-627)NLM300527403 
035 |a (NLM)31443019 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fan, Mingming  |e verfasserin  |4 aut 
245 1 0 |a VisTA  |b Integrating Machine Intelligence with Visualization to Support the Investigation of Think-Aloud Sessions 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.03.2020 
500 |a Date Revised 12.03.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Think-aloud protocols are widely used by user experience (UX) practitioners in usability testing to uncover issues in user interface design. It is often arduous to analyze large amounts of recorded think-aloud sessions and few UX practitioners have an opportunity to get a second perspective during their analysis due to time and resource constraints. Inspired by the recent research that shows subtle verbalization and speech patterns tend to occur when users encounter usability problems, we take the first step to design and evaluate an intelligent visual analytics tool that leverages such patterns to identify usability problem encounters and present them to UX practitioners to assist their analysis. We first conducted and recorded think-aloud sessions, and then extracted textual and acoustic features from the recordings and trained machine learning (ML) models to detect problem encounters. Next, we iteratively designed and developed a visual analytics tool, VisTA, which enables dynamic investigation of think-aloud sessions with a timeline visualization of ML predictions and input features. We conducted a between-subjects laboratory study to compare three conditions, i.e., VisTA, VisTASimple (no visualization of the ML's input features), and Baseline (no ML information at all), with 30 UX professionals. The findings show that UX professionals identified more problem encounters when using VisTA than Baseline by leveraging the problem visualization as an overview, anticipations, and anchors as well as the feature visualization as a means to understand what ML considers and omits. Our findings also provide insights into how they treated ML, dealt with (dis)agreement with ML, and reviewed the videos (i.e., play, pause, and rewind) 
650 4 |a Journal Article 
700 1 |a Wu, Ke  |e verfasserin  |4 aut 
700 1 |a Zhao, Jian  |e verfasserin  |4 aut 
700 1 |a Li, Yue  |e verfasserin  |4 aut 
700 1 |a Wei, Winter  |e verfasserin  |4 aut 
700 1 |a Truong, Khai N  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 26(2020), 1 vom: 22. Jan., Seite 343-352  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:26  |g year:2020  |g number:1  |g day:22  |g month:01  |g pages:343-352 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2019.2934797  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2020  |e 1  |b 22  |c 01  |h 343-352