Improving the Robustness of Scagnostics

In this paper, we examine the robustness of scagnostics through a series of theoretical and empirical studies. First, we investigate the sensitivity of scagnostics by employing perturbing operations on more than 60M synthetic and real-world scatterplots. We found that two scagnostic measures, Outlyi...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on visualization and computer graphics. - 1998. - 26(2020), 1 vom: 22. Jan., Seite 759-769
Auteur principal: Wang, Yunhai (Auteur)
Autres auteurs: Wang, Zeyu, Liu, Tingting, Correll, Michael, Cheng, Zhanglin, Deussen, Oliver, Sedlmair, Michael
Format: Article en ligne
Langue:English
Publié: 2020
Accès à la collection:IEEE transactions on visualization and computer graphics
Sujets:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM300527381
003 DE-627
005 20250225204700.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2019.2934796  |2 doi 
028 5 2 |a pubmed25n1001.xml 
035 |a (DE-627)NLM300527381 
035 |a (NLM)31443018 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Yunhai  |e verfasserin  |4 aut 
245 1 0 |a Improving the Robustness of Scagnostics 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.03.2020 
500 |a Date Revised 12.03.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we examine the robustness of scagnostics through a series of theoretical and empirical studies. First, we investigate the sensitivity of scagnostics by employing perturbing operations on more than 60M synthetic and real-world scatterplots. We found that two scagnostic measures, Outlying and Clumpy, are overly sensitive to data binning. To understand how these measures align with human judgments of visual features, we conducted a study with 24 participants, which reveals that i) humans are not sensitive to small perturbations of the data that cause large changes in both measures, and ii) the perception of clumpiness heavily depends on per-cluster topologies and structures. Motivated by these results, we propose Robust Scagnostics (RScag) by combining adaptive binning with a hierarchy-based form of scagnostics. An analysis shows that RScag improves on the robustness of original scagnostics, aligns better with human judgments, and is equally fast as the traditional scagnostic measures 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Wang, Zeyu  |e verfasserin  |4 aut 
700 1 |a Liu, Tingting  |e verfasserin  |4 aut 
700 1 |a Correll, Michael  |e verfasserin  |4 aut 
700 1 |a Cheng, Zhanglin  |e verfasserin  |4 aut 
700 1 |a Deussen, Oliver  |e verfasserin  |4 aut 
700 1 |a Sedlmair, Michael  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1998  |g 26(2020), 1 vom: 22. Jan., Seite 759-769  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:26  |g year:2020  |g number:1  |g day:22  |g month:01  |g pages:759-769 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2019.2934796  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2020  |e 1  |b 22  |c 01  |h 759-769