A Natural-language-based Visual Query Approach of Uncertain Human Trajectories

Visual querying is essential for interactively exploring massive trajectory data. However, the data uncertainty imposes profound challenges to fulfill advanced analytics requirements. On the one hand, many underlying data does not contain accurate geographic coordinates, e.g., positions of a mobile...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1998. - 26(2020), 1 vom: 22. Jan., Seite 1256-1266
1. Verfasser: Huang, Zhaosong (VerfasserIn)
Weitere Verfasser: Zhao, Ye, Chen, Wei, Gao, Shengjie, Yu, Kejie, Xu, Weixia, Tang, Mingjie, Zhu, Minfeng, Xu, Mingliang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
Beschreibung
Zusammenfassung:Visual querying is essential for interactively exploring massive trajectory data. However, the data uncertainty imposes profound challenges to fulfill advanced analytics requirements. On the one hand, many underlying data does not contain accurate geographic coordinates, e.g., positions of a mobile phone only refer to the regions (i.e., mobile cell stations) in which it resides, instead of accurate GPS coordinates. On the other hand, domain experts and general users prefer a natural way, such as using a natural language sentence, to access and analyze massive movement data. In this paper, we propose a visual analytics approach that can extract spatial-temporal constraints from a textual sentence and support an effective query method over uncertain mobile trajectory data. It is built up on encoding massive, spatially uncertain trajectories by the semantic information of the POls and regions covered by them, and then storing the trajectory documents in text database with an effective indexing scheme. The visual interface facilitates query condition specification, situation-aware visualization, and semantic exploration of large trajectory data. Usage scenarios on real-world human mobility datasets demonstrate the effectiveness of our approach
Beschreibung:Date Completed 04.01.2021
Date Revised 04.01.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1941-0506
DOI:10.1109/TVCG.2019.2934671