Semantic Concept Spaces : Guided Topic Model Refinement using Word-Embedding Projections

We present a framework that allows users to incorporate the semantics of their domain knowledge for topic model refinement while remaining model-agnostic. Our approach enables users to (1) understand the semantic space of the model, (2) identify regions of potential conflicts and problems, and (3) r...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 26(2020), 1 vom: 22. Jan., Seite 1001-1011
1. Verfasser: El-Assady, Mennatallah (VerfasserIn)
Weitere Verfasser: Kehlbeck, Rebecca, Collins, Christopher, Keim, Daniel, Deussen, Oliver
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM300527268
003 DE-627
005 20231225102722.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2019.2934654  |2 doi 
028 5 2 |a pubmed24n1001.xml 
035 |a (DE-627)NLM300527268 
035 |a (NLM)31443000 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a El-Assady, Mennatallah  |e verfasserin  |4 aut 
245 1 0 |a Semantic Concept Spaces  |b Guided Topic Model Refinement using Word-Embedding Projections 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.03.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present a framework that allows users to incorporate the semantics of their domain knowledge for topic model refinement while remaining model-agnostic. Our approach enables users to (1) understand the semantic space of the model, (2) identify regions of potential conflicts and problems, and (3) readjust the semantic relation of concepts based on their understanding, directly influencing the topic modeling. These tasks are supported by an interactive visual analytics workspace that uses word-embedding projections to define concept regions which can then be refined. The user-refined concepts are independent of a particular document collection and can be transferred to related corpora. All user interactions within the concept space directly affect the semantic relations of the underlying vector space model, which, in turn, change the topic modeling. In addition to direct manipulation, our system guides the users' decision-making process through recommended interactions that point out potential improvements. This targeted refinement aims at minimizing the feedback required for an efficient human-in-the-loop process. We confirm the improvements achieved through our approach in two user studies that show topic model quality improvements through our visual knowledge externalization and learning process 
650 4 |a Journal Article 
700 1 |a Kehlbeck, Rebecca  |e verfasserin  |4 aut 
700 1 |a Collins, Christopher  |e verfasserin  |4 aut 
700 1 |a Keim, Daniel  |e verfasserin  |4 aut 
700 1 |a Deussen, Oliver  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 26(2020), 1 vom: 22. Jan., Seite 1001-1011  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:26  |g year:2020  |g number:1  |g day:22  |g month:01  |g pages:1001-1011 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2019.2934654  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2020  |e 1  |b 22  |c 01  |h 1001-1011