Self-Sustained Coalescence-Breakup Cycles of Ferrodrops under a Magnetic Field
The self-sustained coalescence-breakup cycles of ferrodrops were investigated for the first time by a high-speed camera under various magnetic fields. Under an axial magnetic field, the upper ferrodrop would deform into a conic shape before coalescing with the bottom ferropeak. Within 0.2 ms after c...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 37 vom: 17. Sept., Seite 12028-12034 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | The self-sustained coalescence-breakup cycles of ferrodrops were investigated for the first time by a high-speed camera under various magnetic fields. Under an axial magnetic field, the upper ferrodrop would deform into a conic shape before coalescing with the bottom ferropeak. Within 0.2 ms after coalescence, the minimum width of the expanding neck obeys a power-law relationship with time, while the exponents increase with the magnetic field and deviate with a decreasing trend in the later coalescence. The cone angle of the upper ferrodrop before coalescence gradually decreases while it increases before breakup with the magnetic field. A critical magnetic field around 35 mT was reported, above which the ferrofluid column undergoes the periodic phenomenon of coalescence and breakup. The frequency for the whole coalescence-breakup cycle increases exponentially with the applied magnetic field. A simplified force balance allows capturing the periodic mechanism involved in this driven harmonic oscillator |
---|---|
Beschreibung: | Date Revised 23.09.2019 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.9b02046 |