Biomineralization plasticity and environmental heterogeneity predict geographical resilience patterns of foundation species to future change

© 2019 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 25(2019), 12 vom: 04. Dez., Seite 4179-4193
1. Verfasser: Telesca, Luca (VerfasserIn)
Weitere Verfasser: Peck, Lloyd S, Sanders, Trystan, Thyrring, Jakob, Sejr, Mikael K, Harper, Elizabeth M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Mytilus biomineralization calcification climate change compensatory mechanisms multiple stressors ocean acidification resistance
LEADER 01000naa a22002652 4500
001 NLM300424884
003 DE-627
005 20231225102509.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.14758  |2 doi 
028 5 2 |a pubmed24n1001.xml 
035 |a (DE-627)NLM300424884 
035 |a (NLM)31432587 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Telesca, Luca  |e verfasserin  |4 aut 
245 1 0 |a Biomineralization plasticity and environmental heterogeneity predict geographical resilience patterns of foundation species to future change 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.11.2019 
500 |a Date Revised 08.01.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2019 John Wiley & Sons Ltd. 
520 |a Although geographical patterns of species' sensitivity to environmental changes are defined by interacting multiple stressors, little is known about compensatory processes shaping regional differences in organismal vulnerability. Here, we examine large-scale spatial variations in biomineralization under heterogeneous environmental gradients of temperature, salinity and food availability across a 30° latitudinal range (3,334 km), to test whether plasticity in calcareous shell production and composition, from juveniles to large adults, mediates geographical patterns of resilience to climate change in critical foundation species, the mussels Mytilus edulis and M. trossulus. We find shell calcification decreased towards high latitude, with mussels producing thinner shells with a higher organic content in polar than temperate regions. Salinity was the best predictor of within-region differences in mussel shell deposition, mineral and organic composition. In polar, subpolar, and Baltic low-salinity environments, mussels produced thin shells with a thicker external organic layer (periostracum), and an increased proportion of calcite (prismatic layer, as opposed to aragonite) and organic matrix, providing potentially higher resistance against dissolution in more corrosive waters. Conversely, in temperate, higher salinity regimes, thicker, more calcified shells with a higher aragonite (nacreous layer) proportion were deposited, which suggests enhanced protection under increased predation pressure. Interacting effects of salinity and food availability on mussel shell composition predict the deposition of a thicker periostracum and organic-enriched prismatic layer under forecasted future environmental conditions, suggesting a capacity for increased protection of high-latitude populations from ocean acidification. These findings support biomineralization plasticity as a potentially advantageous compensatory mechanism conferring Mytilus species a protective capacity for quantitative and qualitative trade-offs in shell deposition as a response to regional alterations of abiotic and biotic conditions in future environments. Our work illustrates that compensatory mechanisms, driving plastic responses to the spatial structure of multiple stressors, can define geographical patterns of unanticipated species resilience to global environmental change 
650 4 |a Journal Article 
650 4 |a Mytilus 
650 4 |a biomineralization 
650 4 |a calcification 
650 4 |a climate change 
650 4 |a compensatory mechanisms 
650 4 |a multiple stressors 
650 4 |a ocean acidification 
650 4 |a resistance 
700 1 |a Peck, Lloyd S  |e verfasserin  |4 aut 
700 1 |a Sanders, Trystan  |e verfasserin  |4 aut 
700 1 |a Thyrring, Jakob  |e verfasserin  |4 aut 
700 1 |a Sejr, Mikael K  |e verfasserin  |4 aut 
700 1 |a Harper, Elizabeth M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 25(2019), 12 vom: 04. Dez., Seite 4179-4193  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:25  |g year:2019  |g number:12  |g day:04  |g month:12  |g pages:4179-4193 
856 4 0 |u http://dx.doi.org/10.1111/gcb.14758  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2019  |e 12  |b 04  |c 12  |h 4179-4193