Why Authors Don't Visualize Uncertainty

Clear presentation of uncertainty is an exception rather than rule in media articles, data-driven reports, and consumer applications, despite proposed techniques for communicating sources of uncertainty in data. This work considers, Why do so many visualization authors choose not to visualize uncert...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 26(2020), 1 vom: 19. Jan., Seite 130-139
1. Verfasser: Hullman, Jessica (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM300351232
003 DE-627
005 20231225102333.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2019.2934287  |2 doi 
028 5 2 |a pubmed24n1001.xml 
035 |a (DE-627)NLM300351232 
035 |a (NLM)31425093 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hullman, Jessica  |e verfasserin  |4 aut 
245 1 0 |a Why Authors Don't Visualize Uncertainty 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.03.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Clear presentation of uncertainty is an exception rather than rule in media articles, data-driven reports, and consumer applications, despite proposed techniques for communicating sources of uncertainty in data. This work considers, Why do so many visualization authors choose not to visualize uncertainty? I contribute a detailed characterization of practices, associations, and attitudes related to uncertainty communication among visualization authors, derived from the results of surveying 90 authors who regularly create visualizations for others as part of their work, and interviewing thirteen influential visualization designers. My results highlight challenges that authors face and expose assumptions and inconsistencies in beliefs about the role of uncertainty in visualization. In particular, a clear contradiction arises between authors' acknowledgment of the value of depicting uncertainty and the norm of omitting direct depiction of uncertainty. To help explain this contradiction, I present a rhetorical model of uncertainty omission in visualization-based communication. I also adapt a formal statistical model of how viewers judge the strength of a signal in a visualization to visualization-based communication, to argue that uncertainty communication necessarily reduces degrees of freedom in viewers' statistical inferences. I conclude with recommendations for how visualization research on uncertainty communication could better serve practitioners' current needs and values while deepening understanding of assumptions that reinforce uncertainty omission 
650 4 |a Journal Article 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 26(2020), 1 vom: 19. Jan., Seite 130-139  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:26  |g year:2020  |g number:1  |g day:19  |g month:01  |g pages:130-139 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2019.2934287  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2020  |e 1  |b 19  |c 01  |h 130-139