Image Representations with Spatial Object-to-Object Relations for RGB-D Scene Recognition

Scene recognition is challenging due to the intra-class diversity and inter-class similarity. Previous works recognize scenes either with global representations or with the intermediate representations of objects. In contrast, we investigate more discriminative image representations of object-to-obj...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 13. Aug.
1. Verfasser: Song, Xinhang (VerfasserIn)
Weitere Verfasser: Jiang, Shuqiang, Wang, Bohan, Chen, Chengpeng, Chena, Gongwei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM300350589
003 DE-627
005 20240229162308.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2933728  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM300350589 
035 |a (NLM)31425031 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Song, Xinhang  |e verfasserin  |4 aut 
245 1 0 |a Image Representations with Spatial Object-to-Object Relations for RGB-D Scene Recognition 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Scene recognition is challenging due to the intra-class diversity and inter-class similarity. Previous works recognize scenes either with global representations or with the intermediate representations of objects. In contrast, we investigate more discriminative image representations of object-to-object relations for scene recognition, which are based on the triplets of <object, relation, object> obtained with detection techniques. Particularly, two types of representations, including co-occurring frequency of object-to-object relation (denoted as COOR) and sequential representation of object-to-object relation (denoted as SOOR), are proposed to describe objects and their relative relations in different forms. COOR is represented as the intermediate representation of co-occurring frequency of objects and their relations, with a three order tensor that can be fed to scene classifier without further embedding. SOOR is represented in a more explicit and freer form that sequentially describe image contents with local captions. And a sequence encoding model (e.g., recurrent neural network (RNN)) is implemented to encode SOOR to the features for feeding the classifiers. In order to better capture the spatial information, the proposed COOR and SOOR are adapted to RGB-D data, where a RGB-D proposal fusion method is proposed for RGB-D object detection. With the proposed approaches COOR and SOOR, we obtain the state-of-the-art results of RGB-D scene recognition on SUN RGB-D and NYUD2 datasets 
650 4 |a Journal Article 
700 1 |a Jiang, Shuqiang  |e verfasserin  |4 aut 
700 1 |a Wang, Bohan  |e verfasserin  |4 aut 
700 1 |a Chen, Chengpeng  |e verfasserin  |4 aut 
700 1 |a Chena, Gongwei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 13. Aug.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2019  |g day:13  |g month:08 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2933728  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 13  |c 08