Cation-π Interactions and Their Contribution to Mussel Underwater Adhesion Studied Using a Surface Forces Apparatus : A Mini-Review
Mussel underwater adhesion is a model phenomenon important for the understanding of broader biological adhesion and the development of biomimetic wet adhesives. The catechol moiety of 3,4-dihydroxyphenyl-l-alanine (DOPA) is known to be actively involved in the mechanism of mussel underwater adhesion...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 48 vom: 03. Dez., Seite 16002-16012 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Review Adhesives Cations |
Zusammenfassung: | Mussel underwater adhesion is a model phenomenon important for the understanding of broader biological adhesion and the development of biomimetic wet adhesives. The catechol moiety of 3,4-dihydroxyphenyl-l-alanine (DOPA) is known to be actively involved in the mechanism of mussel underwater adhesion; however, other underwater adhesion mechanisms are also crucial. The surface forces apparatus (SFA) has often been used to explore the contributions of other mechanisms to mussel underwater adhesion; e.g., recent SFA-based nanomechanical studies have revealed that cation-π interactions, one of the strongest intermolecular interactions in water, are the pivotal interactions of adhesive proteins involved in underwater mussel adhesion. This mini-review surveys recent research on cation-π interactions and their contributions to strong mussel underwater adhesion, shedding light on some biological processes and facilitating the development of biomedical adhesives |
---|---|
Beschreibung: | Date Completed 09.09.2020 Date Revised 09.09.2020 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.9b01976 |