Genome-wide analysis of MIKC-type MADS-box genes in wheat : pervasive duplications, functional conservation and putative neofunctionalization

© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 225(2020), 1 vom: 15. Jan., Seite 511-529
1. Verfasser: Schilling, Susanne (VerfasserIn)
Weitere Verfasser: Kennedy, Alice, Pan, Sirui, Jermiin, Lars S, Melzer, Rainer
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Triticum aestivum MADS-box genes adaptation crop breeding gene duplication neofunctionalization transcription factors wheat MADS Domain Proteins Plant Proteins
Beschreibung
Zusammenfassung:© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
Wheat (Triticum aestivum) is one of the most important crops worldwide. Given a growing global population coupled with increasingly challenging cultivation conditions, facilitating wheat breeding by fine-tuning important traits is of great importance. MADS-box genes are prime candidates for this, as they are involved in virtually all aspects of plant development. Here, we present a detailed overview of phylogeny and expression of 201 wheat MIKC-type MADS-box genes. Homoeolog retention is significantly above the average genome-wide retention rate for wheat genes, indicating that many MIKC-type homoeologs are functionally important and not redundant. Gene expression is generally in agreement with the expected subfamily-specific expression pattern, indicating broad conservation of function of MIKC-type genes during wheat evolution. We also found extensive expansion of some MIKC-type subfamilies, especially those potentially involved in adaptation to different environmental conditions like flowering time genes. Duplications are especially prominent in distal telomeric regions. A number of MIKC-type genes show novel expression patterns and respond, for example, to biotic stress, pointing towards neofunctionalization. We speculate that conserved, duplicated and neofunctionalized MIKC-type genes may have played an important role in the adaptation of wheat to a diversity of conditions, hence contributing to the importance of wheat as a global staple food
Beschreibung:Date Completed 11.11.2020
Date Revised 11.11.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.16122