|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM300248466 |
003 |
DE-627 |
005 |
20250225193551.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201902869
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1000.xml
|
035 |
|
|
|a (DE-627)NLM300248466
|
035 |
|
|
|a (NLM)31414520
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Feig, Vivian Rachel
|e verfasserin
|4 aut
|
245 |
1 |
3 |
|a An Electrochemical Gelation Method for Patterning Conductive PEDOT:PSS Hydrogels
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 30.09.2019
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Due to their high water content and macroscopic connectivity, hydrogels made from the conducting polymer PEDOT:PSS are a promising platform from which to fabricate a wide range of porous conductive materials that are increasingly of interest in applications as varied as bioelectronics, regenerative medicine, and energy storage. Despite the promising properties of PEDOT:PSS-based porous materials, the ability to pattern PEDOT:PSS hydrogels is still required to enable their integration with multifunctional and multichannel electronic devices. In this work, a novel electrochemical gelation ("electrogelation") method is presented for rapidly patterning PEDOT:PSS hydrogels on any conductive template, including curved and 3D surfaces. High spatial resolution is achieved through use of a sacrificial metal layer to generate the hydrogel pattern, thereby enabling high-performance conducting hydrogels and aerogels with desirable material properties to be introduced into increasingly complex device architectures
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a PEDOT:PSS
|
650 |
|
4 |
|a hydrogels
|
650 |
|
4 |
|a soft conductors
|
700 |
1 |
|
|a Tran, Helen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lee, Minah
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Kathy
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Zhuojun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Beker, Levent
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mackanic, David G
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bao, Zhenan
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 31(2019), 39 vom: 07. Sept., Seite e1902869
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:31
|g year:2019
|g number:39
|g day:07
|g month:09
|g pages:e1902869
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201902869
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 31
|j 2019
|e 39
|b 07
|c 09
|h e1902869
|