Integrating the dynamics of yield traits in rice in response to environmental changes

© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 71(2020), 2 vom: 07. Jan., Seite 490-506
1. Verfasser: Nutan, Kamlesh Kant (VerfasserIn)
Weitere Verfasser: Rathore, Ray Singh, Tripathi, Amit Kumar, Mishra, Manjari, Pareek, Ashwani, Singla-Pareek, Sneh Lata
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Review Drought plant growth regulators rice salinity transgenic crops yield
Beschreibung
Zusammenfassung:© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Reductions in crop yields as a consequence of global climate change threaten worldwide food security. It is therefore imperative to develop high-yielding crop plants that show sustainable production under stress conditions. In order to achieve this aim through breeding or genetic engineering, it is crucial to have a complete and comprehensive understanding of the molecular basis of plant architecture and the regulation of its sub-components that contribute to yield under stress. Rice is one of the most widely consumed crops and is adversely affected by abiotic stresses such as drought and salinity. Using it as a model system, in this review we present a summary of our current knowledge of the physiological and molecular mechanisms that determine yield traits in rice under optimal growth conditions and under conditions of environmental stress. Based on physiological functioning, we also consider the best possible combination of genes that may improve grain yield under optimal as well as environmentally stressed conditions. The principles that we present here for rice will also be useful for similar studies in other grain crops
Beschreibung:Date Completed 08.12.2020
Date Revised 14.12.2020
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erz364