Nucleation and Growth Kinetics of ZnO Nanoparticles Studied by in Situ Microfluidic SAXS/WAXS/UV-Vis Experiments

The synthesis of ZnO nanoparticles proceeds through a complex sequence of precursor reactions, nucleation, and growth processes. For further advancement and control of nanoparticle synthesis, a detailed understanding of the mechanisms and kinetics is essential. With the recent advancement in X-ray s...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 36 vom: 10. Sept., Seite 11702-11709
1. Verfasser: Herbst, Maria (VerfasserIn)
Weitere Verfasser: Hofmann, Eddie, Förster, Stephan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The synthesis of ZnO nanoparticles proceeds through a complex sequence of precursor reactions, nucleation, and growth processes. For further advancement and control of nanoparticle synthesis, a detailed understanding of the mechanisms and kinetics is essential. With the recent advancement in X-ray scattering and spectroscopy methods, in situ experiments during nanoparticle synthesis can be performed, which provide important new insights into reaction and growth mechanisms. Here we use in situ small- and wide-angle X-ray scattering (SAXS, WAXS) coupled with UV-vis spectroscopy to investigate the nucleation and growth process of an oleate-based ZnO nanoparticle synthesis yielding narrowly disperse nanoparticles over the complete time scale from 30 s to 18 h. We find that the nucleation and early growth period during the first 1000 s can be quantitatively described by a classical homogeneous nucleation and growth mechanism. Furthermore, we identified a second growth phase where nanoparticle crystallization occurs, as indicated by the appearance of higher-order Bragg peaks and a pronounced shift of the absorption edge in the UV-vis spectra. The results are in very good agreement with recent studies on the use of the ZnO alkali hydroxide hydrolysis route. Thus, a very good understanding of the nucleation and growth mechanisms and kinetics of the most important ZnO synthesis routes has been established
Beschreibung:Date Revised 23.09.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.9b01149