Recent Progress in CVD Growth of 2D Transition Metal Dichalcogenides and Related Heterostructures

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 41 vom: 11. Okt., Seite e1901694
1. Verfasser: Zhang, Yu (VerfasserIn)
Weitere Verfasser: Yao, Yuyu, Sendeku, Marshet Getaye, Yin, Lei, Zhan, Xueying, Wang, Feng, Wang, Zhenxing, He, Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review 2D layered materials CVD approach growth behavior heterostructures transition metal dichalcogenides
Beschreibung
Zusammenfassung:© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
In recent years, 2D layered materials have received considerable research interest on account of their substantial material systems and unique physicochemical properties. Among them, 2D layered transition metal dichalcogenides (TMDs), a star family member, have already been explored over the last few years and have exhibited excellent performance in electronics, catalysis, and other related fields. However, to fulfill the requirement for practical application, the batch production of 2D TMDs is essential. Recently, the chemical vapor deposition (CVD) technique was considered as an elegant alternative for successfully growing 2D TMDs and their heterostructures. The latest research advances in the controllable synthesis of 2D TMDs and related heterostructures/superlattices via the CVD approach are illustrated here. The controlled growth behavior, preparation strategies, and breakthroughs on the synthesis of new 2D TMDs and their heterostructures, as well as their unique physical phenomena, are also discussed. Recent progress on the application of CVD-grown 2D materials is revealed with particular attention to electronics/optoelectronic devices and catalysts. Finally, the challenges and future prospects are considered regarding the current development of 2D TMDs and related heterostructures
Beschreibung:Date Completed 14.10.2019
Date Revised 01.10.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201901694