Multi-Task Deep Relative Attribute Learning for Visual Urban Perception

Visual urban perception aims to quantify perceptual attributes (e.g., safe and depressing attributes) of physical urban environment from crowd-sourced street-view images and their pairwise comparisons. It has been receiving more and more attention in computer vision for various applications, such as...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 07. Aug.
1. Verfasser: Min, Weiqing (VerfasserIn)
Weitere Verfasser: Mei, Shuhuan, Liu, Linhu, Wang, Yi, Jiang, Shuqiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM300087152
003 DE-627
005 20240229162302.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2932502  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM300087152 
035 |a (NLM)31398119 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Min, Weiqing  |e verfasserin  |4 aut 
245 1 0 |a Multi-Task Deep Relative Attribute Learning for Visual Urban Perception 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Visual urban perception aims to quantify perceptual attributes (e.g., safe and depressing attributes) of physical urban environment from crowd-sourced street-view images and their pairwise comparisons. It has been receiving more and more attention in computer vision for various applications, such as perceptive attribute learning and urban scene understanding. Most existing methods adopt either (i) a regression model trained using image features and ranked scores converted from pairwise comparisons for perceptual attribute prediction or (ii) a pairwise ranking algorithm to independently learn each perceptual attribute. However, the former fails to directly exploit pairwise comparisons while the latter ignores the relationship among different attributes. To address them, we propose a Multi-Task Deep Relative Attribute Learning Network (MTDRALN) to learn all the relative attributes simultaneously via multi-task Siamese networks, where each Siamese network will predict one relative attribute. Combined with deep relative attribute learning, we utilize the structured sparsity to exploit the prior from natural attribute grouping, where all the attributes are divided into different groups based on semantic relatedness in advance. As a result, MTDRALN is capable of learning all the perceptual attributes simultaneously via multi-task learning. Besides the ranking sub-network, MTDRALN further introduces the classification sub-network, and these two types of losses from two sub-networks jointly constrain parameters of the deep network to make the network learn more discriminative visual features for relative attribute learning. In addition, our network can be trained in an end-to-end way to make deep feature learning and multi-task relative attribute learning reinforce each other. Extensive experiments on the large-scale Place Pulse 2.0 dataset validate the advantage of our proposed network. Our qualitative results along with visualization of saliency maps also show that the proposed network is able to learn effective features for perceptual attributes 
650 4 |a Journal Article 
700 1 |a Mei, Shuhuan  |e verfasserin  |4 aut 
700 1 |a Liu, Linhu  |e verfasserin  |4 aut 
700 1 |a Wang, Yi  |e verfasserin  |4 aut 
700 1 |a Jiang, Shuqiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 07. Aug.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2019  |g day:07  |g month:08 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2932502  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 07  |c 08