Bamboo-Like Nitrogen-Doped Carbon Nanotube Forests as Durable Metal-Free Catalysts for Self-Powered Flexible Li-CO2 Batteries

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 39 vom: 16. Sept., Seite e1903852
1. Verfasser: Li, Xuelian (VerfasserIn)
Weitere Verfasser: Zhou, Jingwen, Zhang, Junxiang, Li, Matthew, Bi, Xuanxuan, Liu, Tongchao, He, Tao, Cheng, Jianli, Zhang, Fan, Li, Yongpeng, Mu, Xiaowei, Lu, Jun, Wang, Bin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Li-CO2 batteries flexible electrodes metal-free bifunctional catalysts nitrogen-doped carbon nanotubes self-powered systems
Beschreibung
Zusammenfassung:© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Li-CO2 battery is a promising energy storage device for wearable electronics due to its long discharge plateau, high energy density, and environmental friendliness. However, its utilization is largely hindered by poor cyclability and mechanical rigidity due to the lack of a flexible and durable catalyst electrode. Herein, flexible fiber-shaped Li-CO2 batteries with ultralong cycle-life, high rate capability, and large specific capacity are fabricated, employing bamboo-like N-doped carbon nanotube fiber (B-NCNT) as flexible, durable metal-free catalysts for both CO2 reduction and evolution reactions. Benefiting from high N-doping with abundant pyridinic groups, rich defects, and active sites of the periodic bamboo-like nodes, the fabricated Li-CO2 battery shows outstanding electrochemical performance with high full-discharge capacity of 23 328 mAh g-1 , high rate capability with a low potential gap up to 1.96 V at a current density of 1000 mA g-1 , stability over 360 cycles, and good flexibility. Meanwhile, the bifunctional B-NCNT is used as the counter electrode for a fiber-shaped dye-sensitized solar cell to fabricate a self-powered fiber-shaped Li-CO2 battery with overall photochemical-electric energy conversion efficiency of up to 4.6%. Along with a stable voltage output, this design demonstrates great adaptability and application potentiality in wearable electronics with a breath monitor as an example
Beschreibung:Date Completed 30.09.2019
Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201903852