Multiparametric real-time sensing of cytosolic physiology links hypoxia responses to mitochondrial electron transport

© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1984. - 224(2019), 4 vom: 01. Dez., Seite 1668-1684
1. Verfasser: Wagner, Stephan (VerfasserIn)
Weitere Verfasser: Steinbeck, Janina, Fuchs, Philippe, Lichtenauer, Sophie, Elsässer, Marlene, Schippers, Jos H M, Nietzel, Thomas, Ruberti, Cristina, Van Aken, Olivier, Meyer, Andreas J, Van Dongen, Joost T, Schmidt, Romy R, Schwarzländer, Markus
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't cytosol genetically encoded fluorescent protein sensors hypoxia stress in vivo sensing mitochondrial electron transport chain retrograde signalling Bacterial Proteins Luminescent Proteins mehr... yellow fluorescent protein, Bacteria NAD 0U46U6E8UK Carbon 7440-44-0 Adenosine Triphosphate 8L70Q75FXE Glutathione GAN16C9B8O Oxygen S88TT14065 Calcium SY7Q814VUP
LEADER 01000caa a22002652 4500
001 NLM299975584
003 DE-627
005 20250225182709.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1111/nph.16093  |2 doi 
028 5 2 |a pubmed25n0999.xml 
035 |a (DE-627)NLM299975584 
035 |a (NLM)31386759 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wagner, Stephan  |e verfasserin  |4 aut 
245 1 0 |a Multiparametric real-time sensing of cytosolic physiology links hypoxia responses to mitochondrial electron transport 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.08.2020 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2019 The Authors. New Phytologist © 2019 New Phytologist Trust. 
520 |a Hypoxia regularly occurs during plant development and can be induced by the environment through, for example, flooding. To understand how plant tissue physiology responds to progressing oxygen restriction, we aimed to monitor subcellular physiology in real time and in vivo. We establish a fluorescent protein sensor-based system for multiparametric monitoring of dynamic changes in subcellular physiology of living Arabidopsis thaliana leaves and exemplify its applicability for hypoxia stress. By monitoring cytosolic dynamics of magnesium adenosine 5'-triphosphate, free calcium ion concentration, pH, NAD redox status, and glutathione redox status in parallel, linked to transcriptional and metabolic responses, we generate an integrated picture of the physiological response to progressing hypoxia. We show that the physiological changes are surprisingly robust, even when plant carbon status is modified, as achieved by sucrose feeding or extended night. Inhibition of the mitochondrial respiratory chain causes dynamics of cytosolic physiology that are remarkably similar to those under oxygen depletion, highlighting mitochondrial electron transport as a key determinant of the cellular consequences of hypoxia beyond the organelle. A broadly applicable system for parallel in vivo sensing of plant stress physiology is established to map out the physiological context under which both mitochondrial retrograde signalling and low oxygen signalling occur, indicating shared upstream stimuli 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a cytosol 
650 4 |a genetically encoded fluorescent protein sensors 
650 4 |a hypoxia stress 
650 4 |a in vivo sensing 
650 4 |a mitochondrial electron transport chain 
650 4 |a retrograde signalling 
650 7 |a Bacterial Proteins  |2 NLM 
650 7 |a Luminescent Proteins  |2 NLM 
650 7 |a yellow fluorescent protein, Bacteria  |2 NLM 
650 7 |a NAD  |2 NLM 
650 7 |a 0U46U6E8UK  |2 NLM 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
650 7 |a Adenosine Triphosphate  |2 NLM 
650 7 |a 8L70Q75FXE  |2 NLM 
650 7 |a Glutathione  |2 NLM 
650 7 |a GAN16C9B8O  |2 NLM 
650 7 |a Oxygen  |2 NLM 
650 7 |a S88TT14065  |2 NLM 
650 7 |a Calcium  |2 NLM 
650 7 |a SY7Q814VUP  |2 NLM 
700 1 |a Steinbeck, Janina  |e verfasserin  |4 aut 
700 1 |a Fuchs, Philippe  |e verfasserin  |4 aut 
700 1 |a Lichtenauer, Sophie  |e verfasserin  |4 aut 
700 1 |a Elsässer, Marlene  |e verfasserin  |4 aut 
700 1 |a Schippers, Jos H M  |e verfasserin  |4 aut 
700 1 |a Nietzel, Thomas  |e verfasserin  |4 aut 
700 1 |a Ruberti, Cristina  |e verfasserin  |4 aut 
700 1 |a Van Aken, Olivier  |e verfasserin  |4 aut 
700 1 |a Meyer, Andreas J  |e verfasserin  |4 aut 
700 1 |a Van Dongen, Joost T  |e verfasserin  |4 aut 
700 1 |a Schmidt, Romy R  |e verfasserin  |4 aut 
700 1 |a Schwarzländer, Markus  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The New phytologist  |d 1984  |g 224(2019), 4 vom: 01. Dez., Seite 1668-1684  |w (DE-627)NLM09818248X  |x 1469-8137  |7 nnns 
773 1 8 |g volume:224  |g year:2019  |g number:4  |g day:01  |g month:12  |g pages:1668-1684 
856 4 0 |u http://dx.doi.org/10.1111/nph.16093  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 224  |j 2019  |e 4  |b 01  |c 12  |h 1668-1684