Understanding the Role of Surface Oxygen in Hg Removal on Un-Doped and Mn/Fe-Doped CeO2 (111)

© 2019 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 40(2019), 30 vom: 15. Nov., Seite 2611-2621
1. Verfasser: Liu, Ping (VerfasserIn)
Weitere Verfasser: Ling, Lixia, Lin, Hao, Wang, Baojun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Hg removal Mn/Fe doping density functional theory lattice O surface-adsorbed O
LEADER 01000naa a22002652 4500
001 NLM299922332
003 DE-627
005 20231225101409.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.26038  |2 doi 
028 5 2 |a pubmed24n0999.xml 
035 |a (DE-627)NLM299922332 
035 |a (NLM)31381172 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Ping  |e verfasserin  |4 aut 
245 1 0 |a Understanding the Role of Surface Oxygen in Hg Removal on Un-Doped and Mn/Fe-Doped CeO2 (111) 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.03.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2019 Wiley Periodicals, Inc. 
520 |a Effects of surface-adsorbed O and lattice O for the CeO2 (111) surface on Hg removal has been researched. In this work, periodic calculations based on density functional theory (DFT) were performed with the on-site Coulomb interaction. Hg is oxidized to HgO via the surface-adsorbed O by overcoming a Gibbs free energy barrier of 114.1 kJ·mol-1 on the CeO2 (111) surface. Mn and Fe doping reduce the activation Gibbs free energy for the Hg oxidation, and energies of 70.7 and 49.6 kJ·mol-1 are needed on Ce0.96 Mn0.04 O2 (111) and Ce0.96 Fe0.04 O2 (111) surfaces. Additionally, lattice O also plays an important role in Hg removal. Hg cannot be oxidized leading to the formation of HgO on the un-doped CeO2 (111) surface owing to the inertness of lattice O, which can be easily oxidized to HgO on Ce0.96 Mn0.04 O2 (111) and Ce0.96 Fe0.04 O2 (111) surfaces. It can be seen that both surface-adsorbed O and lattice O play important roles in removing Hg. The present study will shed light on understanding and developing Hg removal technology on un-doped and Mn/Fe-doped CeO2 (111) catalysts. © 2019 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a Hg removal 
650 4 |a Mn/Fe doping 
650 4 |a density functional theory 
650 4 |a lattice O 
650 4 |a surface-adsorbed O 
700 1 |a Ling, Lixia  |e verfasserin  |4 aut 
700 1 |a Lin, Hao  |e verfasserin  |4 aut 
700 1 |a Wang, Baojun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 40(2019), 30 vom: 15. Nov., Seite 2611-2621  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:40  |g year:2019  |g number:30  |g day:15  |g month:11  |g pages:2611-2621 
856 4 0 |u http://dx.doi.org/10.1002/jcc.26038  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2019  |e 30  |b 15  |c 11  |h 2611-2621