SafePredict : A Meta-Algorithm for Machine Learning That Uses Refusals to Guarantee Correctness

SafePredict is a novel meta-algorithm that works with any base prediction algorithm for online data to guarantee an arbitrarily chosen correctness rate, 1-ϵ, by allowing refusals. Allowing refusals means that the meta-algorithm may refuse to emit a prediction produced by the base algorithm so that t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 2 vom: 05. Feb., Seite 663-678
1. Verfasser: Kocak, Mustafa A (VerfasserIn)
Weitere Verfasser: Ramirez, David, Erkip, Elza, Shasha, Dennis E
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM299920062
003 DE-627
005 20231225101406.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2932415  |2 doi 
028 5 2 |a pubmed24n0999.xml 
035 |a (DE-627)NLM299920062 
035 |a (NLM)31380747 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kocak, Mustafa A  |e verfasserin  |4 aut 
245 1 0 |a SafePredict  |b A Meta-Algorithm for Machine Learning That Uses Refusals to Guarantee Correctness 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.09.2021 
500 |a Date Revised 29.09.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a SafePredict is a novel meta-algorithm that works with any base prediction algorithm for online data to guarantee an arbitrarily chosen correctness rate, 1-ϵ, by allowing refusals. Allowing refusals means that the meta-algorithm may refuse to emit a prediction produced by the base algorithm so that the error rate on non-refused predictions does not exceed ϵ. The SafePredict error bound does not rely on any assumptions on the data distribution or the base predictor. When the base predictor happens not to exceed the target error rate ϵ, SafePredict refuses only a finite number of times. When the error rate of the base predictor changes through time SafePredict makes use of a weight-shifting heuristic that adapts to these changes without knowing when the changes occur yet still maintains the correctness guarantee. Empirical results show that (i) SafePredict compares favorably with state-of-the-art confidence-based refusal mechanisms which fail to offer robust error guarantees; and (ii) combining SafePredict with such refusal mechanisms can in many cases further reduce the number of refusals. Our software is included in the supplementary material, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TPAMI.2019.2932415 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Ramirez, David  |e verfasserin  |4 aut 
700 1 |a Erkip, Elza  |e verfasserin  |4 aut 
700 1 |a Shasha, Dennis E  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 2 vom: 05. Feb., Seite 663-678  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:2  |g day:05  |g month:02  |g pages:663-678 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2932415  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 2  |b 05  |c 02  |h 663-678